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ABSTRACT

The Transformer architecture’s “attention” mechanism, heralded as a cornerstone of large language
models, is misnamed, obscuring its true nature as a pairwise phase-space embedding rooted in nonlin-
ear dynamical systems. This paper demonstrates that the dot-product similarity operations—termed
“query,” “key,” and “value”—mirror delay-coordinate embedding techniques pioneered by Takens and
others in the 1980s[1,2]. By comparing time-shifted token projections, Transformers reconstruct a
latent language attractor, transforming sequential data into a high-dimensional manifold where mean-
ing emerges as geometric trajectories, not cognitive focus. This reframing, inspired by prior work in
high-dimensional signal clustering, reveals that positional encodings and softmax normalization are
often redundant, as temporal structure is inherently captured in delay-based geometries. We propose
retiring the term “attention” in favor of “pairwise phase space embedding,” offering a clearer, finite,
and interpretable framework aligned with Finite Mechanics principles—a framework privileging
geometric constraints over infinite parameterization. This shift suggests leaner architectures, bypass-
ing encodings and reducing computational complexity, while enhancing transparency to mitigate
risks like manifold distortions. Grounded in historical parallels from cardiology and seismology, this
reinterpretation positions. We show how delay embeddings inherently encode positional information,
rendering softmax and positional encodings redundant. Transformers as an unknowing rediscovery of
dynamical systems methods, opening paths to principled, geometry-driven models. A forthcoming
work will extend this into a hyperspherical language architecture, tracing sentences as paths across a
dynamic semantic field.

Keywords Tranformer Architecture · Dynamical Systems · Delay Embeddings · Phase Space Embedding · Finite
Mechanics · Neural Geometry

1 Introduction

The architecture commonly referred to as "attention" has become the cornerstone of modern large language models.
It is described using terms such as "query," "key," and "value," which borrow language from human cognition and
database systems, possibly giving an illusion of interpretive or selective focus. However, close inspection reveals that
this mechanism is neither cognitive nor attentional in any meaningful sense. It is, at its core, a structured similarity
operation between projected vectors, a dot product followed by normalization. What it does, mechanistically, is not
"attend," but measure proximity in a latent space, a technique long understood in modern dynamical systems analysis. In
the case of the LLM, it serves to convert a time series of tokens into a two-dimensional format suitable for presentation
to a multi-perceptron neural network.

This paper therefore proposes that such a mechanism is more accurately and productively understood as a form of phase
space embedding, a technique drawn from the study of nonlinear dynamical systems. Originally developed by Takens,
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Packard, and others in the 1980s, phase space embedding allows a one-dimensional time series to be reinterpreted as a
multidimensional trajectory, revealing the hidden structure of the system that generated it. It is a method not of storing
memory, but of reconstructing it spatially.

The similarity operation at the heart of so-called attention, pairwise dot products between shifted representations of
the same sequence, performs this same function. It constructs a surrogate space in which sequential information is
preserved through relative positioning. Each token in a sequence is compared to every other, not to decide "what to
attend to," but to reconstruct a geometry of meaning from which linguistic or semantic predictions can be made. What
emerges is not a focus of attention, but a trajectory across an attractor manifold formed by language itself.

The purpose of this paper is to formalize that equivalence. We begin by outlining the theory of phase space embedding,
tracing its origin in nonlinear science. We then demonstrate that transformer-based architectures perform a structurally
equivalent operation, albeit one phrased in a language that suggests a semantic or interpretive process. We propose that
reframing this operation as a nonlinear dynamical systems approach has practical consequences: it allows us to simplify
components of the transformer, challenge the necessity of positional encodings, and potentially reduce computational
complexity while improving interpretability.

By grounding modern neural sequence processing of LLM tokens in the formal and well-understood mathematics of
dynamical systems, we open a path toward more principled, finite, and explainable models, of which the transformer is
only a special, unknowing case.

2 Phase Space Embedding Theory

2.1 Origin in Nonlinear Dynamics

In the 1970s and 1980s, a new approach to analyzing complex systems began to take form across disciplines such as
cardiology, meteorology, and fluid dynamics. Systems that were previously seen as chaotic or unpredictable were now
being modeled not by linear differential equations, but through reconstruction of their underlying geometry. This was
the birth of modern nonlinear dynamical systems theory, and one of its most profound contributions was the technique
known as phase space embedding.

Pioneered by Floris Takens[1], James P. Crutchfield[5], Robert Shaw[6], and later expanded by Leon Glass and others[3],
phase space embedding provided a method to reconstruct the state space of a dynamical system from a single observable
time series. In simple terms, this meant that even if we could only measure one aspect of a system, we could still
recover the system’s internal structure and dynamics.

The key to this process was the method of delays. By recording not just the current measurement, but also its values at
previous time steps, one could construct a trajectory in a higher-dimensional space. This trajectory unfolds the latent
attractor that governs the system’s evolution. What initially appears as a flat or noisy signal becomes a geometric object,
a path through a structured manifold in phase space.

2.2 Embedding a Time Series

Mathematically, delay embedding works by mapping a one-dimensional sequence into an n-dimensional space through
time-shifted copies of itself. Given a time series x(t), we construct vectors of the form:

x(t) = [x(t), x(t - tau), x(t - 2tau), ..., x(t - (m - 1)tau)]

Here, m is the embedding dimension, and tau is the delay. Takens’ theorem guarantees that if m is sufficiently large, the
resulting reconstruction is a diffeomorphic image of the original attractor, meaning it preserves the system’s qualitative
behavior and structure. A diffeomorphic image is a smooth, reversible mapping that preserves the attractor’s geometric
structure, ensuring the embedded trajectory reflects the system’s dynamics, such as loops or convergence patterns.

The effect is striking. What was once a linear or one-dimensional sequence is now a trajectory in space, whose geometry
can be analyzed, visualized, and used for prediction or classification. This approach has been used to analyze heartbeat
dynamics, atmospheric data, and stock market patterns. It is also at the heart of manifold learning methods used in
many machine learning algorithms today.

Crucially, this embedding process does not add information. It simply re-represents the existing time series in a way that
reveals its underlying structure. It is a transformation, not a translation. This is what makes it so powerful: it exposes
hidden order within apparent complexity.
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2.3 A Language Example: Sentence as Time Series

To make the connection between time series embedding and language more explicit, consider the simple case of a
sentence treated as a discrete sequence of tokens. Each word in a sentence occurs in a fixed order, and that order imparts
structure. From a dynamical systems perspective, this is a form of temporal evolution. Each word corresponds to
a distinct point in time, and the sentence as a whole is a time series of symbolic or numerical data. In this context,
the language attractor is the latent manifold of semantic and syntactic relationships among tokens. Delay embedding
reconstructs this attractor as a geometric trajectory, per Takens’ theorem, encoding the sentence’s meaning in its shape.

Let us take a simple sentence:

"The quick brown fox jumps over the lazy dog happily today before tea."

We can map each word to a number, using a stand-in for a learned embedding. For illustration purposes, we use word
length as a proxy:

[3, 5, 5, 3, 5, 4, 3, 4, 8, 5, 5, 6, 3]

This one-dimensional series represents our time signal. We now apply the method of delays to embed this series into a
two-dimensional space using Takens’ approach. Using an embedding dimension of 2 and a delay tau = 1, we construct
the following vectors:

x1 = [3, 5]

x2 = [5, 5]

x3 = [5, 3]

x4 = [3, 5]

x5 = [5, 4]

...

Each vector represents a point in 2D space. Plotting these sequentially produces a visible trajectory, a path, through
this new phase space. What was previously a linear signal now reveals turning points, recurrences, and geometrical
structure. This is the core insight of phase space embedding: meaning is not stored in the values themselves, but in the
shape they collectively form over time.

Transformer architectures perform an analogous operation, although this is not typically acknowledged. By computing
dot products between token projections, they effectively measure geometric relationships between word embeddings
that are shifted versions of the same sentence. The result is a high-dimensional manifold that encodes the sentence
not as a list of words, but as a spatial configuration, a trajectory of relationships. This latent space is what enables
prediction, coherence, and contextual adaptation.

In both cases, a linear sequence is transformed into a structured path. The phase space view provides a clean and
unambiguous way of understanding this transformation, without relying on metaphors such as attention or focus. It
also opens the door to visualizing and interpreting the language manifold as a dynamic geometry, rather than a table of
weights.

3 Application to Transformer and Neural Architectures

3.1 Mechanistic Breakdown of the Transformer

The Transformer, introduced by Vaswani et al. [4], revolutionized neural language models by replacing recurrent
structures with a feedforward pipeline, enabling parallelism and unprecedented scalability. Its core mechanism,
misleadingly termed “attention,” relies on algebraic operations described with anthropomorphic labels: “query,” “key,”
and “value.” These terms suggest cognitive or information-retrieval processes, but the reality is purely computational.

For a sequence of n tokens, each represented by an embedding vector ei ∈ Rd, the Transformer computes three
projections per token:

qi = WQei, ki = WKei, vi = WV ei, (1)

where WQ,WK ,WV ∈ Rd×d are learned linear transformation matrices, and qi,ki,vi ∈ Rd are the query, key, and
value vectors, respectively. Contextual similarity is computed via the dot product between each query and every key,
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forming a similarity matrix A ∈ Rn×n:

Aij =
qi · kj√

d
. (2)

The scaling factor
√
d prevents exploding gradients. This matrix is normalized using a softmax function to produce

weights:

Wij = softmax(Ai)j =
exp(Aij)∑n
k=1 exp(Aik)

. (3)

These weights are applied to the value vectors to compute a new representation for each token:

ci =

n∑
j=1

Wijvj . (4)

This process, termed “scaled dot-product attention,” is repeated across multiple heads and stacked in layers, with
feedforward networks interleaved. Positional encodings—vectors added to embeddings to encode token order—and
optional masking (e.g., zeroing future tokens in autoregressive models) ensure sequential coherence.

Far from cognitive “attention,” this is a pairwise similarity measurement across a sequence, transforming a temporal
series into a weighted spatial configuration. It constructs a latent geometry, not a focus of intent.

3.2 Demonstrating the Embedding Equivalence

Viewing the Transformer through the lens of nonlinear dynamical systems reveals a striking equivalence to phase-space
embedding. Consider a sequence of tokens {t1, t2, . . . , tn} as a discrete time series, where each token ti is embedded
as ei ∈ Rd. The Transformer’s dot-product operation compares projections of these embeddings, effectively measuring
relationships between time-shifted representations of the sequence.

In phase-space embedding, a time series x(t) is mapped to a higher-dimensional space using delay coordinates:

x(t) = [x(t), x(t− τ), x(t− 2τ), . . . , x (t− (m− 1)τ)] (5)

where m is the embedding dimension and τ is the delay. Takens’ theorem ensures that, for sufficient m, this
reconstruction preserves the system’s attractor geometry. The Transformer performs a structurally similar operation.
The similarity matrix Aij =

qi·kj√
d

quantifies the geometric proximity between token i’s query and token j’s key, akin
to comparing delayed vectors in a phase-space trajectory.

Formally, let ei represent the state of the sequence at time i. The query and key projections (qi = WQei,kj = WKej)
are analogous to time-shifted coordinates, as WQ and WK apply different transformations to the same underlying
embeddings. The dot product qi · kj measures their alignment, constructing a surrogate space where temporal
relationships are encoded as spatial distances. The weighted sum ci =

∑
j Wijvj then blends these relationships into a

new representation, unfolding the sequence’s latent manifold layer by layer.

To formalize the equivalence between Transformer operations and phase space embedding, consider a sequence of
tokens

{t1, t2, . . . , tn},
each embedded as

ei ∈ Rd.

The Transformer computes query and key vectors as

qi = WQei, kj = WKej ,

where
WQ,WK ∈ Rd×d

are linear transformations. The scaled dot product

Aij =
qi · kj√

d

measures geometric alignment between these projections, analogous to comparing delay vectors in phase space:

x(ti) = [ei, ei−1, . . . , ei−m+1], x(tj) = [ej , ej−1, . . . , ej−m+1],
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where
qi · kj ∼ ⟨x(ti),x(tj)⟩

for a similarity measure ⟨·, ·⟩ (e.g., inner product).

Per Takens’ theorem, if the embedding dimension d is sufficiently large, this pairwise comparison reconstructs a
diffeomorphic image of the language attractor—a high-dimensional manifold encoding the sequence’s semantic and
syntactic structure. Thus, the similarity matrix

A ∈ Rn×n

represents a trajectory through this latent space, unfolding the temporal sequence into a geometric configuration without
requiring explicit normalization or positional markers.

This is not “attention” but a reconstruction of a language attractor. Each Transformer layer refines this geometry,
embedding the sequence into increasingly structured contexts, much like successive delay embeddings unfold a
dynamical system’s trajectory.

To illustrate, revisit the sentence “The quick brown fox jumps over the lazy dog happily today before tea” from
Section 2.3, with word-length embeddings [3,5,5,3,5,4,3,4,8,5,5,6,3]. In a Transformer, these tokens are projected into
qi,ki,vi, and the similarity matrix A captures pairwise relationships (e.g., “quick” aligns with “brown” due to syntactic
proximity). This matrix mirrors the 2D trajectory ([3,5], [5,5], . . . ) formed by delay embedding, where geometric
structure encodes sequential meaning. The Transformer’s output is a path through a high-dimensional manifold, not a
selection of “attended” tokens.

3.3 Simplification Opportunity

Recognizing the Transformer as a phase-space embedding opens avenues for simplification. In traditional delay
embedding, temporal information is inherent in the relative placement of delay vectors—no explicit positional encodings
are needed. The Transformer’s reliance on positional encodings, added to embeddings to preserve order, may be
redundant if delay-style relationships are directly leveraged. For instance, instead of adding sinusoidal or learned
positional vectors, the sequence could be embedded as:

xi = [ei, ei−1, . . . , ei−m+1], (6)

where past tokens form a delay coordinate, capturing temporal structure geometrically. This is aligns with Takens’
theorem where delay embeddings capture temporal order through the relative positioning of vectors, which reconstructs
the sequence’s attractor geometry without external markers. For example, in the sequence

[e1, e2, e3],

the delay vectors
[e1, e2], [e2, e3]

encode order inherently, rendering the Transformer’s sinusoidal positional encodings redundant.

Moreover, softmax normalization and masking (e.g., zeroing future tokens in autoregressive models) are corrective
measures to stabilize a process not understood as delay embedding. Per Takens’ theorem, the attractor’s geometry
constrains relationships, rendering softmax unnecessary, as simpler metrics like cosine similarity can preserve the
manifold’s structure.

Unlike softmax, which normalizes dot products to stabilize training, delay embeddings rely on the attractor’s intrinsic
geometry to constrain relationships. Per Takens’ theorem, the manifold’s structure preserves the system’s dynamics
without such corrections, suggesting simpler metrics like cosine similarity can suffice.

The Transformer’s softmax normalization, while critical for stabilizing gradient updates in variable-length sequences,
is unnecessary in delay embeddings. Takens’ theorem ensures that temporal structure is preserved by the attractor’s
geometry, not by normalized weights. For instance, the delay vectors [ei, ei−1] and [ej , ej−1] encode order inherently
through their relative positions in phase space. This suggests that softmax—introduced to manage unbounded dot
products in long sequences—can be replaced with fixed-scale similarity measures once the manifold’s structure is
explicitly leveraged.

Softmax normalization in Transformers compensates for unbounded dot products in variable-length sequences—a
problem absent in delay embeddings, where the attractor’s geometry intrinsically bounds pairwise relationships. This
suggests softmax is a computational crutch, not a theoretical necessity. While softmax aids gradient stability in practice,
its role diminishes if embeddings explicitly reconstruct the language attractor’s topology.

These simplifications suggest a leaner architecture: one that embeds sequences directly via delay coordinates, bypasses
positional encodings, and uses geometric constraints for contextual blending. A preliminary experiment could test
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this by comparing a shallow model with delay-embedded tokens to a standard Transformer, measuring perplexity and
efficiency. Such a design would be more interpretable, computationally lighter, and aligned with the finite, geometric
principles of Finite Mechanics.

3.4 Implications for a Simpler Approach

The Transformer’s attention mechanism was originally a pragmatic engineering solution: it converted serial token
sequences into a 2D similarity matrix for parallel computation. Positional encodings and softmax normalization were
ad hoc additions to preserve order and stabilize training—unaware that the method of delays already inherently encodes
temporal structure through phase-space geometry.

In fact, we could construct an equivalent square matrix for parallel processing directly from delay embeddings: by
stacking delay vectors (e.g., xi = [ei, ei−1, . . . ]) as rows or columns, padding as needed. This would eliminate the
need for positional encodings and softmax, as the attractor’s geometry naturally bounds relationships. The Transformer,
unknowingly, reinvented dynamical embedding—but with redundant corrections.

4 Historical Parallels in Signal Analysis

Before neural networks came to dominate machine learning, a wide range of problems in medicine, physics, and
engineering were addressed using techniques from nonlinear dynamical systems. These approaches often relied on time
series data, raw sequences of measurements that appeared noisy or complex at first glance, but which revealed deep
structure when reinterpreted in geometric terms.

Among the earliest and most successful applications of phase space embedding was the analysis of biological rhythms.
Leon Glass and Michael Mackey applied these techniques to understand cardiac dynamics, particularly arrhythmias and
heart rate variability. In their work, electrocardiogram signals were not treated as isolated peaks and troughs, but as
trajectories within a latent physiological state space. Delay embedding allowed researchers to visualize how the heart’s
electrical behavior evolved over time, detecting emergent patterns, limit cycles, or chaos.

Similar strategies were used in the study of neurological data. Electroencephalogram recordings were reanalyzed using
delay coordinates, uncovering signatures of epilepsy, sleep stages, and even cognitive attention as geometric phenomena
rather than statistical events. These embeddings helped classify states not by fixed thresholds, but by their trajectories
within a reconstructed attractor space.

In seismology, time-delay embeddings were employed to detect precursors to earthquakes. In audio processing,
similar embeddings were used to distinguish between phonemes, speaker identities, and emotional tone, by embedding
waveform snippets into geometric manifolds.

What unites these applications is a shift in focus: from statistical averaging to structure reconstruction. Delay embedding
transforms a time series into a map of the system that generated it, allowing for richer analysis without needing to
observe every internal variable directly. This approach does not rely on massive parameterization or deep models, it
leverages the intrinsic structure already present in the data.

In many ways, the operations at the heart of transformer architectures are closer to these earlier dynamical techniques
than to traditional feedforward neural networks. However, this lineage has gone largely unacknowledged. The
conceptual heritage of Takens, Packard, and Glass is absent from the vocabulary of deep learning. The emphasis on
scaling, stacking, and parameter tuning has obscured the fact that the fundamental operation of pairwise similarity
across time is a known and well-theorized method for reconstructing dynamical systems.

Recognizing this parallel provides not just historical grounding, but an opportunity. It suggests that we can revisit the
transformer not as a singular invention, but as a rediscovery, one that might benefit from reconnecting with its true
intellectual ancestry.

5 Discussion

The recognition that transformer architectures are performing a form of phase space embedding, rather than "attention,"
reframes a significant portion of modern machine learning. It removes the cognitive metaphor that has dominated
discourse and replaces it with a geometric and mechanical interpretation, rooted in nonlinear dynamical systems.

This reframing carries several implications:
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5.1 Terminological Clarity

The language of "attention," while rhetorically effective, has introduced persistent confusion. It implies intentionality,
selection, or interpretive focus, none of which are present in the actual operation. As this paper has shown, what is
being computed is a structural similarity between projections of the same system across time. This is not attention, but
trajectory reconstruction.

By naming this mechanism more accurately, as pairwise phase space embedding, we realign our understanding with
the actual geometry of what is taking place, and avoid anthropomorphizing processes that are neither cognitive nor
semantic in nature.

5.2 Architectural Consequences

Recognizing the transformer as a system for unfolding phase space leads naturally to reconsiderations of its design. In
traditional delay embedding, no positional encoding is required; time is encoded in the structure of the vector itself.
Likewise, masking and normalization techniques such as softmax can be understood as corrective overlays introduced
to stabilize a process whose geometric nature was not fully recognized.

The reliance on softmax reflects a misunderstanding of the underlying geometry. In delay embeddings, pairwise com-
parisons are inherently bounded by the attractor’s topology, obviating the need for normalization. Future architectures
could adopt manifold-constrained similarity metrics, bypassing softmax entirely.

Positional encodings simulate delay structure artificially (e.g., via sinusoidal waves), whereas delay embeddings are the
structure. The latter is more parsimonious but may require careful tuning of m and τ .

This opens the door to simplified architectures that rely on delay-style embeddings directly, avoid unnecessary positional
signals, and use geodesic or curvature-based metrics instead of matrix-based similarity. Such systems would be more
efficient, more interpretable, and more finite, qualities aligned with the goals of Finite Mechanics.

5.3 Conceptual Consequences

Framing the language manifold as a dynamic attractor space, rather than a parameterized token map, supports an entirely
different view of cognition and computation. Sentences are no longer generated token by token, but traced as paths
across a learned manifold, guided by field structure rather than probabilistic sampling. This resonates strongly with
field-based theories of meaning, language as motion, and interaction-based modeling.

It also challenges the default paradigm of neural language models as infinite statistical engines. Instead, it suggests a
finite dynamic core: one that operates through geometric interaction and internal constraint, rather than brute-force
function approximation.

5.4 Philosophical Alignment

This reinterpretation of transformer mechanics through the lens of phase space is not merely a technical substitution. It
is a philosophical realignment. It returns us to a view of systems not as networks of weights and losses, but as fields of
interaction unfolding in time. It privileges geometry over mystique, structure over metaphor.

In doing so, it makes models more explainable, more grounded, and more capable of integration into a broader scientific
worldview, one that includes physiology, cognition, and semantics under the shared language of finite dynamics.

6 Conclusion

This paper has demonstrated that the mechanism popularly known as "attention" within transformer-based neural
networks is more accurately described as a form of pairwise phase space embedding. By revisiting the origins of this
technique in nonlinear dynamical systems, particularly through the work of Takens, Packard, and Glass, we have shown
that the essential operation of the transformer is not cognitive, semantic, or attentional, it is geometrical. It constructs a
latent attractor space from a time series through delay-structured pairwise comparisons.

We have further illustrated that this same mechanism has long been employed in fields such as cardiology, seismology,
and signal processing, where it is explicitly recognized as a method of system reconstruction, not interpretation. The sim-
ilarity operations within the transformer serve the same function, but have been described through an anthropomorphic
vocabulary that has obscured both their origin and their potential.

Recognizing this equivalence enables a simplification of neural architecture design. By reframing these operations
as geometric projections within a dynamical manifold, we open the door to models that are more explainable, more
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efficient, and better aligned with the foundational principles of Finite Mechanics. Positional encodings, masking
procedures, and softmax normalization may be re-evaluated in light of this insight and replaced by delay-embedding
strategies that are formally grounded and computationally simpler.

This paper serves as the first in a two-part contribution. The companion work, to appear in Finite Tractus: Part II, will
introduce a new dynamical architecture based on hyperspherical manifold geometry and magnetically interacting word
identities. That model will extend the present analysis into a generative field system where language is not sampled but
traced, and where sentences emerge as paths through a structured, charged semantic topology.

This reinterpretation is not a rebranding of the Transformer—it is a clarification of what it has been all along. What
was once described as attention is better understood as dynamical embedding. The implications of this shift reach far
beyond architecture, pointing toward a future in which intelligence is modeled not through abstraction, but through
finite geometry, structure, and interaction.
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Figure 1: 2D Delay Embedding with Smooth Manifold Approximation. The original word-length time series from
a sentence is plotted as a set of delay vectors (x(t), x(t+ 1)), each representing a step through phase space. A smooth
spline curve (red) suggests the latent manifold structure implicitly reconstructed by the delay embedding. This geometric
trajectory illustrates how temporal patterns can be encoded without cognitive or attentional operations—supporting
the reinterpretation of Transformer mechanics as dynamical embedding. Note how the trajectory’s curvature encodes
word-order relationships (e.g., ‘quick’→‘brown’) without softmax or positional markers.
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Figure 2: Pairwise Projection of Query and Key Vectors and Construction of Similarity Matrix A. Each
token ti is projected into a query vector qi and a key vector ki. The Transformer mechanism performs pairwise dot
products between all qi and kj , filling the similarity matrix Aij . This process is structurally identical to comparing
delay-embedded states in phase space. Rather than cognitive attention, the mechanism reconstructs a latent attractor
geometry from temporal token relationships, mapping sequences into high-dimensional manifolds.The similarity matrix
Aij mirrors phase-space vector alignment (e.g., Takens’ delay coordinates), not cognitive selection.
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