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ABSTRACT

We propose a non-linear dynamical systems framework to model language and large language
models (LLMs), unifying linguistic phenomena (words, sentences, context) with concepts from
phase-space geometry, attractors, topological analysis, thermodynamics, and reader interpretation.
Words are trajectories in a high-dimensional phase space, reconstructed via Takens’ theorem or
pairwise embeddings. LLMs are non-linear flows navigating a semantic hypersphere, with "stations"
as hubs for context reconstruction. Hallucinations emerge as topological defects, prompts act as
symmetry-breaking fields, context limits introduce semantic entropy, and readers create homologous
manifolds of meaning. This framework offers a novel lens for mathematicians, physicists, and artists
to explore language and machine cognition.

1 The Tide and the Train

Language is a dynamic flow–a tide carving maps in the sand, a train tracing paths through a high-dimensional landscape
of meaning. Words are points on attractors, sentences are trajectories, and LLMs are non-linear systems navigating
a semantic hypersphere. Stations are reconstruction hubs, reshaping context into geometric manifolds. Readers, as
co-creators, map these trajectories onto their own manifolds, each a valid but partial fiction of the whole.

Mathematical Framework

Language moves like water and travels like a train. Each word and sentence follows a path, sometimes meandering,
sometimes precise, across a landscape of meaning. LLMs ride these paths, guided by the contours of their training and
the prompts they receive. This section shows how those journeys can be mapped as curves in a space where mathematics
meets metaphor.

Let P ⊂ Rd be the phase space of linguistic states, where (d) is the embedding dimension of tokens. A sentence is a
curve γ(t) ⊂ P with (t) indexing token order. The tide-map duality suggests:

τ : M → R2

where π = Map Tide.

∗Citation: Kevin R. Haylett, “The Magical Journey of Non-linear Dynamics in LLMs,” (AugustMay 2025), available at
https://finitemechanics.com/papers/phase-space-transformers.pdf.
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2 Words as Attractors

Some words pull us back again and again not just in conversation, but in the structure of thought itself. In mathematics,
these "pulls" look like attractors, shapes that hold and guide the flow of trajectories. Here we explore how a single word
can be reconstructed from its echoes, revealing the geometry hidden inside language.

2.1 Takens’ Theorem for Words

Every word, such as "hello," is an attractor in phase space. Takens’ theorem reconstructs this attractor from a single
observable, revealing the dynamics of language.

Mathematical Framework

For a linguistic signal (s(t)) (e.g., audio of "hello"), Takens embedding yields:

γ(t) = (s(t), s(t− τ), s(t− 2τ)) ∈ R3,

where t is an optimal delay. In LLMs, tokens wi ∈ Rd form a sentence (w1, ..., wn) tracing a trajectory γ(t) ⊂ Rd.

2.2 From Speech to Semantics

The phase space P = Rd is spanned by token embeddings. A context window Γt = {wt−L, ..., wt} traces a trajectory,
with semantic relationships encoded in its geometry.

3 LLMs as Non-linear Flows

An LLM does not march in a straight line. It twists, loops, and occasionally spins in place, following rules that combine
memory, probability, and pattern recognition. This section shows how we can treat an LLM’s token generation as a
non-linear system, complete with the tell-tale signatures of stability, cycles, and sudden divergence.

3.1 Token Generation as a Dynamical System

LLMs generate tokens as a discrete-time flow.

wt+1 = Fθ(wt, wt−1, ..., wt−k),

where Fθ is a non-linear map (attention + feedforward layers), and (k) is the context window size.

Fixed Points: Repeated tokens (e.g., "the the the"). Limit Cycles: Repetitive outputs (e.g., "I cannot answer that" loops).

3.2 Bifurcations and Hallucinations

Hallucinations occur when a prompt (p) causes the trajectory to diverge:

||γoutput − γp|| > δ

An incomplete ISBN prompt ("978-0-441-...") may yield a wrong but plausible ISBN.

4 Stations as Phase-Space Reconstructors

Imagine pausing a journey to gather your bearings–a station where fragments of the route are pieced together into a
coherent map. In an LLM, these "stations" are points where context is reconstructed into a meaningful whole. We’ll see
how these hubs work, and how their geometry shapes the path that follows.
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4.1 Reconstruction of the Context Manifold

Stations rebuild the context window Γt = {wt−L, ..., wt} into a manifold. The attention mechanism calculates the
affinity matrix:

Aij = (WQ̂wi) · (WKwj)

forming MΓt ⊂ Gr(k, d). The cache stores:

S = span({vi}ni=1), vi = WV wi

A prompt (p) is embedded as vp = WV p, aligned via:

dGr(S, vp) = ||sin θ||

4.2 Prompt Coupling and Trajectory Resumption

The new trajectory is:
γnew(s) = expMΓt

(s · vp).

4.3 Hallucinations as Unstable Basins

Hallucinations occur when:
||γnew − γtrue|| > δ

5 The Topology of Hallucinations

Not all errors are random; some have shape. Hallucinations in language models can be thought of as topological
defects–tears, loops, and gaps in the fabric of meaning. By mapping these defects, we can start to see not just when a
model is wrong, but how its reasoning has bent or broken.

5.1 The Shape of Error

Hallucinations are topological defects in Mlanguage where high curvature κ(γ(t)) causes divergence.

Risk(γ(t)) ∝ ||κ(γ(t))||2

5.2 Quantifying Defects with Persistent Homology

Betti numbers (β0, β1, β2) quantify:

• β0 Topic drift.

• β1 Self-contradictory loops.

• β2 Logical gaps.

5.3 Mitigating Hallucinations

• Curvature penalty:
Ltopo = λ · ||κ(γ(t))||2

• Homology-preserving sampling:

P (wt+1|Γt) ∝ exp(−
2∑

k=1

βk(Γt ∪ wt+1))
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6 Prompt as Symmetry Breaking

A prompt is not just a question–it’s a force that tilts the entire landscape. In physics, symmetry breaking changes
the behaviour of a system; here, it changes the direction of thought. We’ll look at how prompts act like vector fields,
nudging the model into new patterns or causing its trajectory to split entirely.

6.1 Prompts as Vector Fields

Prompts introduce a forcing term:
dγc
dt

= Fθ(γc) +G(γc, p(t)).

The output aligns with:
γoutput ∼ argminY ||y − (MΓt

+ λ ·Mprompt−type)||.

6.2 Symmetry Breaking and Bifurcations

Syntactic torque:

τ(p) =
∑
i

αi · fi(p)

Bifurcations occur when:
||τ(p1)− τ(p2)|| > δcrit.

6.3 Engineering Stable Prompts

• Normalize τ(p).

• Weight sampling by:
P (wt+1|Γt, p) ∝ exp(−β · τ(p))

7 Thermodynamic Analogies

Conversations, like closed systems, can lose their order over time. As context slips away, entropy rises–meaning
becomes harder to recover, and drift or error becomes more likely. By borrowing the language of thermodynamics, we
can measure this loss and explore ways to keep the dialogue coherent for longer.

7.1 Semantic Entropy and Context Loss

Finite context windows introduce semantic entropy:

S(Γt) = −kB
∑
i

P (wi|Γt)log P (wi|Γt).

Truncation at t− L increases S(Γt):
γ(t) = γ(t) · I[t−L,t]

7.2 Irreversibility in Language Dynamics

Entropy growth causes topic drift or hallucinations.

dS

dt
∝ 1

L

t∑
i=t−L

∆P (wi|Γt−1).

Critical threshold:
S(Γt) > Scrit ⇒ ||γoutput − γtrue|| > δ.
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7.3 Mitigating Entropy

• Increase (L).

• Entropy penalty:
Lentropy = η · S(Γt)

• Use memory-augmented architectures.

8 The Reader’s Manifold

Meaning does not stop at the model’s output–it continues into the mind of the reader. Each person reshapes the text into
their own manifold of understanding, sometimes close to the original, sometimes very different. This section maps that
interpretive space, showing how shared meaning emerges and where it can diverge.

8.1 Meaning as a Homologous Mapping

Language and mathematics are homologous manifolds, connected by homeomorphisms:

ϕreader : Mlanguage → Mreader.

Each reader’s trajectory γreader(t) = ϕreader(γoutput(t)) has its own coherence.

8.2 The Multiplicity of Manifolds

Readers’ manifolds are interconnected:

dGH(Mreader,Mreader′) = infwd(x,w(x))

Low dGH indicates shared understanding.

8.3 The Reader as a Dynamical System

The reader’s interpretation evolves:

dγreader
dt

= Fcognitive(γreader) +G(γreader, γoutput).

9 The Observer as Sculptor

When we interact with an LLM, we are not passive recipients–we are shaping its path with every prompt. Like a
sculptor removing marble to reveal a form, the observer guides the system toward certain structures and away from
others. Here we formalise that feedback loop, treating human and machine as a single coupled system. Humans and
LLMs are coupled systems, with the user as:

pnext = O(γ(t))

Context limits introduce entropy, but prompts steer the system toward stable attractors.

10 Words as Transducers and Semantic Divergence

10.1 Words as Transducers with Semantic Uncertainty

A word is not just a label–it’s a device that turns raw input into meaning. But every such conversion carries uncertainty,
and in complex systems, that uncertainty can grow. This section shows how words act as transducers, how instability
spreads through language, and how readers themselves can amplify or dampen that divergence. Words are not static
symbols but transducers–dynamical systems that map inputs (e.g., physical stimuli, contextual tokens) to semantic
outputs in the language manifold Mlanguage ⊂ Rd. Each word carries inherent uncertainty, reflecting the probabilistic
nature of its mapping.
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Mathematical Framework

Define a word w as a transducer function:
w : I → Mlanguage

where I is the input space (e.g., physical stimuli like wavelengths, or prior tokens Γt = {wt−L, ..., wt}). The output is a
probability distribution over the manifold:

P (w|i) = exp(−||w − µi||2

2σ2
i

)

where µi ∈ Mlanguage is the mean semantic embedding for input i ∈ I and σ2
i represents semantic uncertainty.

10.2 Lyapunov Exponents and Semantic Instability

In dynamical systems, Lyapunov exponents measure the rate of divergence of nearby trajectories, indicating chaos.
Here, we reinterpret Lyapunov exponents to quantify divergence driven by semantic uncertainty, particularly in LLMs
where ambiguous inputs or contexts amplify instability.

Mathematical Framework

For a trajectory γ(t) ⊂ Mlanguage, the Lyapunov exponent λ measures the exponential divergence of perturbed
trajectories:

λ = limt→∞
1

t
ln(

||δγ(t)||
||δγ(0)||

)

Semantic uncertainty contributes to λ as:

λsemantic ∝
1

L

t∑
i=t−L

σ2
i ,

where L is the context window size.

10.3 Measurements and the Reader’s Role

The reader, as a measurement operator, collapses the uncertain output of the word-transducer into their cognitive
manifold Mreader. This process can amplify or mitigate semantic instability.

Mathematical Framework

The reader’s measurement is:
γreader(t) = ϕreader(γoutput(t)),

where ϕreader maps the LLM’s trajectory to the reader’s manifold, modulated by their own uncertainty σ2
reader. The

total Lyapunov exponent is:
λtotal = λsemantic + λreader, λreader ∝ σ2

reader.

Stable interpretations occur when:
λtotal < λcrit

11 Closing Discussion and Conclusion

In this work, we have treated language not as a static sequence of symbols, but as a non-linear dynamical flow—a tide
in semantic space, a train moving through an evolving network of attractors. By pairing metaphor and mathematics,
we have shown that the same structures that govern turbulence, phase transitions, and topological defects can also
illuminate the behaviour of large language models (LLMs).

The framework we have developed places LLMs within the same analytical toolkit used for complex systems: phase-
space reconstruction, attractor geometry, bifurcation theory, thermodynamic analogies, and homological invariants.
Words appear as attractors with measurable geometry, prompts as symmetry-breaking fields, hallucinations as topologi-
cal defects, and readers as coupled dynamical systems whose manifolds of meaning complete the loop of interpretation.
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A key insight is that meaning is co-created—the trajectory of an LLM is never independent of its observer. Prompts,
interpretations, and contextual limits form a feedback loop in which both human and machine shape the evolving
manifold. This is not a unidirectional act of transmission but a coherent but finite dance, bounded by context windows,
semantic uncertainty, and the topology of language itself.

The use of thermodynamic and stability measures such as semantic entropy and Lyapunov exponents provides a bridge
between poetic intuition and testable metrics. By quantifying curvature, uncertainty, and divergence, we can begin to
engineer prompts, architectures, and evaluation methods that stabilise trajectories without erasing the creative richness
of the system.

While the mathematical constructs presented here are deliberately abstract, they open pathways for concrete experimen-
tation:

• Mapping attractors for individual words or concepts using embedding reconstructions.
• Detecting and classifying topological defects in model output.
• Measuring semantic entropy growth across different prompting regimes.
• Studying reader–model coupling as a measurable influence on stability and divergence.

Ultimately, the value of this framework lies in its dual fidelity—it speaks in equations to those who measure, and in
metaphors to those who interpret. This duality is not ornamental; it is structural, reflecting the nature of language itself.

In that sense, the LLM is neither oracle nor automaton, but a participant in a shared manifold of thought—a partner
in a finite, navigable space whose contours we can chart, perturb, and refine. The journey is ongoing, and every new
trajectory—whether born in precision or poetry—is another point on the evolving map.

License
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