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Abstract

Efficient AI Embedding Compression Using JPEG: A Preliminary
Study

Unpublished foundational paper – archived for reference

This document marks the early stage of my work on AI embedding com-
pression, written in early 2024. While unfinished, it presents the key experi-
ments and hypotheses that led directly to later developments in AI security,
semantic attractors, and computational efficiency. Posted here as a legacy
artifact within the broader arc of Finite Tractus and embedding-space explo-
ration. Copyright (c) Kevin R. Haylett 2024 Reference as Haylett, K.R., 2004,
www.finitemechanics.com/papers/JPEG-compression.pdf

Recent advancements in AI and deep learning have led to significant com-
putational challenges, particularly in managing high-dimensional embeddings.
Traditional methods for reducing embedding size include Singular Value Decom-
position (SVD) and Principal Component Analysis (PCA), both of which focus on
feature extraction through matrix factorization. This study explores an alterna-
tive method—applying JPEG compression directly to AI embeddings—leveraging
its ability to retain critical data while filtering out non-essential information.
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1 Introduction

Recent advancements in AI and deep learning have led to significant computational
challenges, particularly in managing high-dimensional embeddings. Traditional meth-
ods for reducing embedding size include Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA), both of which focus on feature extraction
through matrix factorization. This study explores an alternative method—applying
JPEG compression directly to AI embeddings—leveraging its ability to retain critical
data while filtering out non-essential information.

JPEG compression is a widely implemented algorithm that efficiently reduces data
size while maintaining key structural elements of the original input. Unlike SVD and
PCA, which perform global transformations, JPEG uses localized Discrete Cosine
Transform (DCT) to selectively remove less visually important components. This study
hypothesizes that AI embeddings contain structurally similar redundant information
that JPEG compression can effectively eliminate, thereby improving computational
efficiency without degrading, and in some cases, improving AI task performance.

2 Results

The methodology employed in this study ensures a controlled and consistent evalu-
ation of compression effects on embeddings. JPEG compression was applied directly
to embeddings converted into image representations, ensuring uniform preprocess-
ing. The embeddings were structured as grayscale matrices, maintaining their relative
information density while minimizing distortions introduced by color channels. The
choice of JPEG over other compression methods, such as wavelets, PCA, or autoen-
coders, was driven by its widespread hardware acceleration and proven ability to
preserve key structural components in a hierarchical manner. Modern AI hardware
accelerators, including NVIDIA Tensor Cores and Google TPUs, incorporate highly
optimized JPEG decoding pipelines that minimize decompression overhead, allowing
real-time application in AI inference tasks¹. While alternative lossy transformations
could provide similar benefits, JPEG’s block-wise cosine decomposition aligns natu-
rally with frequency-based information reduction, making it a practical candidate for
real-time AI inference compression. Future work could extend this analysis to evaluate
whether similar power-law scaling emerges under alternative compression paradigms,
potentially providing a generalized framework for embedding sparsification.

The results show that JPEG compression was reliable and practical technique for
compressing embedding dimension when used with quality settings in the range of
75-100.

Table 1 shows examples of the sentence pairs used in the experiment, along with
their original and compressed similarity scores.

To further verify the robustness of the results, the experiment was repeated with
a new set of sentence pairs, and the findings were consistent with the initial study. As
shown in Plot 1 (b), the second experiment produced almost identical trends in cosine
similarity retention and convergence, reinforcing the reliability of JPEG compression
as a method for embedding optimization. In additional comprehensive set of controls
was established.
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2.1 Energy and Computational Efficiency Considerations

The application of JPEG compression to AI embeddings presents a compelling oppor-
tunity for reducing computational and energy costs. Large-scale transformer models,
such as GPT-4, process vast amounts of data, with a single 500-token query requir-
ing approximately 175 trillion floating point operations (FLOPs). Reducing redundant
high-frequency components through compression minimizes the FLOP requirements
while maintaining representational integrity. Note: JPEG compression is image depen-
dant but typically a quality setting of 80 might have a compression ratio of around
20:1, meaning its file size is about 20 times smaller than the original uncompressed
image.

Assuming a 10:1 compression ratio, our analysis suggests a ninety percent reduction
in FLOPs, leading to an improvement in AI inference and lower energy consumption.
Even a 10 or 15 compression, could offer considerable savings with minimal degradation
in similarity.

Inference latency is also positively impacted. Compressed embeddings require less
memory transfer and storage bandwidth, reducing inference times proportionally to
compression levels.

Hardware compatibility further supports this approach. Modern GPUs and AI
accelerators (such as TPUs and FPGAs) already feature optimized JPEG decod-
ing pipelines, minimizing the overhead of decompression. Given that AI inference is
increasingly memory-bound, the energy trade-off between compression and computa-
tional efficiency suggests that lossy compression could significantly reduce the carbon
footprint of large-scale AI models. Future research should focus on extending these
findings across different architectures and alternative compression techniques.

3 Tables

Table 1 Estimated computational efficiency gains from AI token compression.

Scenario Original Compute (FLOPs) Compressed Compute (FLOPs) Reduction

No Compression 175T FLOPs 175T FLOPs 0%
2:1 Compression 175T FLOPs 87.5T FLOPs 50%
5:1 Compression 175T FLOPs 35T FLOPs 80%
10:1 Compression 175T FLOPs 17.5T FLOPs 90%

Table 2 Energy Trade-Off Comparison

Factor Full Precision AI JPEG 10% Compression

Memory Transfer (GB/s) 100% 10% (90% reduction)
Compute Cost (FLOPs) 100% 105% (decompression overhead + AI)
Power Usage (Watts) High (DRAM-bound) Lower (compute-bound)
GPU Acceleration Standard matrix ops GPU-accelerated JPEG decoding
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4 Figures

5 Methods

The experiment involves applying JPEG compression at various quality levels (95% to
75%) to pre-trained embeddings from a transformer-based model (Sentence-BERT).
The cosine similarity between original and compressed embeddings is computed to
determine the impact of compression. The method follows a structured approach: first,
AI embeddings are generated for sentence pairs using a pre-trained Sentence-BERT
model. These embeddings are then converted into an image format, normalizing values
to an 8-bit grayscale range. JPEG compression is applied at decreasing quality levels,
from 95% down to 75%. After compression, the embeddings are decompressed and
cosine similarity with the original embeddings is computed. Finally, the relationship
between compression level and AI similarity retention is analyzed.

6 Discussion

The implications of embedding compression extend beyond theoretical efficiency gains
to real-world AI deployment and scalability. Large-scale AI systems, including lan-
guage models, search engines, and recommendation systems, operate under stringent
latency and energy constraints. By leveraging lossy compression strategies such as
JPEG, embedding storage can be significantly reduced, leading to faster inference
and lower energy consumption without requiring extensive model modifications. For
instance, in search ranking applications, where millions of embeddings are compared in
real time, even a 2:1 compression can halve memory bandwidth requirements, reducing
retrieval times and datacenter operational costs. Likewise, in chat models and docu-
ment summarization tasks, a 10:1 compression could enable real-time inference on edge
devices, expanding the accessibility of AI models beyond cloud-based environments.
The efficiency gains extend beyond inference speed—AI hardware accelerators (GPUs,
TPUs) benefit from reduced memory load, enhancing overall throughput. Estimating
datacenter-scale energy savings, a 10:1 compression could reduce operational costs by
90, with potential environmental benefits due to lower energy demands. Future work
should further explore task-specific trade-offs, determining the optimal compression
threshold that balances efficiency, accuracy, and model performance across diverse AI
applications..

A critical advantage of this approach is its potential to reduce AI computational
costs and energy consumption. Large-scale AI models, particularly those used in
deep learning and natural language processing, require substantial GPU and memory
resources. By compressing embeddings through JPEG, several benefits emerge. Storing
and processing compressed embeddings decreases memory transfer overhead, lead-
ing to improved efficiency in high-bandwidth applications. Many AI inference chips,
including GPUs and dedicated accelerators such as TPUs and FPGAs, already support
optimized JPEG processing, making integration seamless and computationally inex-
pensive. AI models have been criticized for their increasing carbon footprint; reducing
compute energy through efficient compression could have significant sustainability
benefits.
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A key consideration when applying JPEG-style compression to embeddings is the
potential computational overhead introduced by decompression. However, modern
AI accelerators—including GPUs, TPUs, and FPGAs—feature dedicated hardware
for JPEG decoding, significantly reducing the associated processing cost. Decom-
pression consists of inverse discrete cosine transform (IDCT), dequantization, and
entropy decoding, all of which are optimized for parallel execution on existing AI infer-
ence pipelines. Empirical benchmarks show that JPEG decompression requires only a
small fraction of the FLOPs used for deep learning inference², making it an efficient
preprocessing step. In contrast to the cost of matrix multiplications in large trans-
former models, which scale with parameter count and sequence length, the overhead
of JPEG decompression is relatively constant and negligible. This suggests that AI
models can integrate lossy compression without significant latency penalties, enabling
real-time inference optimizations while maintaining high fidelity. Future optimiza-
tions could explore hybrid compression models that balance JPEG with model-aware
sparsification techniques to further minimize computational impact.

Further research is needed to compare JPEG compression with alternative embed-
ding reduction techniques at scale. Additionally, experiments on real-world AI
applications, such as search ranking, recommendation systems, and text classification,
would provide deeper insights into practical implementation.

7 Conclusion

JPEG compression presents a novel and unexpected opportunity for AI embedding
optimization. By leveraging a well-established, hardware-optimized algorithm, AI
models can achieve performance improvements with minimal computational overhead.
This approach introduces a novel role to utilize JPEG architecture to increase AI
efficiency and holds promising potential for reducing the environmental footprint of
large-scale AI applications.
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