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Chapter 1

The Pathway to
Geofinitism

This thesis traces a path and an arc. A tractus through
the manifold of knowledge, from the finite measurements
of physics to the geometric heart of mathematics, lan-
guage, and thought.

It is not a linear journey but a virtuous circle, a
strange attractor uniting disciplines in a finite, dynamic,
and complete system: the Grand Corpus. This arc, born
from a quest to reduce the carbon footprint of artificial
intelligence, unfolded into a new philosophy of knowl-
edge, Geofinitism (GF), where infinity is a procedure,
not an object, and meaning emerges as trajectories in
a bounded, representable space.The journey began with
Finity, a reframing of physics through finite axioms. Mea-
surements, inherently finite and uncertain, are the seeds
of knowledge, parsed into the Grand Corpus like words
into a sentence. This grounded perspective challenged
the infinite abstractions of classical physics, demanding
models that reflect the tangible limits of our tools and
senses. From this foundation, the arc turned to large lan-
guage models (LLMs), where an experiment in computa-
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The manifold of mathematics

tional efficiency—applying JPEG compression to token
embeddings (JPEGExplainer)—revealed not noise but
structure: recursive loops, semantic flattening, and ex-
istential collapse, a phenomenon I term manifold hijack.
These were not random failures but trajectories on a lan-
guage attractor, echoing the non-linear dynamics of chaos
theory.This insight led to Pairwise Phase Space Embed-
ding, where I recognized the Transformer’s so-called “at-
tention” as a delay-coordinate embedding, reconstructing
a latent language manifold akin to Takens’ theorems from
the 1980s. LLMs, far from probabilistic black boxes, were
rediscovering the geometry of dynamical systems, their
outputs shaped by finite, representable structures. This
realization fuelled Finite Tractus, a two-part exploration
of meaning and cognition. Part I (Foundations) mapped
language as a non-linear manifold, with manifold hijack
revealing its fragility and resilience.

Part II (Meaning and Knowledge) introduced fuzzy
axioms, framing meaning as a dynamic, evolving trajec-
tory within a local corpus.

Finally, Part III (The Manifold of Mathematics) com-
pleted the circle, casting mathematics as a finite subman-
ifold of the Grand Corpus, governed by axioms like the
Grand Corpus Axiom and Geometric Embedding, where
every proof and object is a document, embeddable at fi-
nite resolution.This arc—from physics to AI to language
to mathematics—converged on a Geofinitist Complete-
ness Theorem:

the Grand Corpus is a finite, dynamic system, com-
plete in its ability to capture all knowable truths through
measurements and cross-links, with procedural infinities
pointing beyond without requiring unattainable eterni-
ties. What began as a practical quest to save the planet
by optimizing AI computation unveiled a profound truth:
knowledge, whether physical, linguistic, or mathematical,
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The manifold of mathematics

is a living, bounded manifold, growing with every mea-
surement, word, and proof.This thesis is not a conclusion
but a beginning, a cognitive map for navigating the Cor-
pus.

This final part in the Tractus invites readers—researchers,
philosophers, physicists, and dreamers—to walk this path,
to sense the contours of a finite yet wondrous system. In-
spired by walks with my dog Dylan under Manchester’s
clouds, it poses a final set of questions Questions: in-
quiries into the dynamics of the Corpus, the resilience of
meaning, and the unity of physics, language, and math-
ematics.

Like a tuning fork struck near the edge of what we
know, this work resonates, not with mystical infinities,
but with the structured beauty of a finite universe, for-
ever growing, forever complete.

Overview

This work develops Geofinitism (GF), a foundational frame-
work for mathematics grounded in the finite, physical
reality of representation and computation. In GF, ev-
ery mathematical object is a document in a fixed, finite
Grand Corpus defined by an alphabet, a grammar, and
a set of derivation rules. All quantifiers range only over
definable, finitely representable objects, and the token
“∞” is treated procedurally rather than as a completed
entity. A geometric embedding principle further asserts
that each document admits a finite-resolution embedding
into a fixed-dimensional Euclidean space, providing a uni-
fying view of syntax, semantics, and computation. This
finite, constructive stance aligns naturally with physical
computation and measurement, offering a coherent re-
formulation of analysis, algebra, and geometry without

9DRAFT V1.1 September 2025



The manifold of mathematics

appeal to actual infinities.

Geofinitism

The term Geofinitism has been selected to signify a delib-
erate departure from historically situated concepts such
as ”Geofinitsm” or ”Geometrical Finitism.” While philo-
sophically related, this framework requires an unambigu-
ous name that is free from inherited meanings. The prefix
Geo- serves a dual purpose: it references the geometric,
finite embedding structures that are central to this work,
while also evoking the Greek ge (”earth”), grounding the
entire framework in the physical, measurable world. The
suffix -finitism aligns the philosophy with historical fini-
tist and constructivist traditions but with a fundamental
reorientation: finitude is not a limitation to be contended
with, but rather the generative principle from which all
knowledge emerges. Accordingly, Geofinitism describes
a system in which all knowledge—mathematical, linguis-
tic, and physical—arises from finite acts of measurement,
representation, and recombination. Unlike many prior
programs that defined themselves in opposition to the
infinite, Geofinitism embraces procedural infinity, which
is understood as the open-ended extension of finite pro-
cesses rather than an appeal to actual, non-procedural
infinities. The term’s primary advantage is its concep-
tual clarity and practical utility, providing a distinct and
unencumbered banner for this new body of work.

Philosophical Background: Language,

Meaning, and Mathematics

The project of understanding the relation between lan-
guage, thought, and mathematics is not a new one. From
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antiquity to the present, philosophers have repeatedly re-
turned to the question of how symbols, structures, and
meaning interrelate. The present work continues this
lineage, not as a rupture but as a refinement, drawing
together historical threads into a finite and geometrical
perspective.

From Antiquity to Early Modernity

Plato’s theory of Forms cast mathematics as eternal and
universal, a domain of pure structure to which language
could only gesture. Aristotle, in contrast, offered cate-
gories and logical structures, grounding meaning in clas-
sification and relation rather than transcendence. This
dialectic between universality and situated structure con-
tinued through the medieval scholastics, where symbolic
language was treated as a bridge between human under-
standing and divine order.

The early modern period brought sharper formula-
tions. Leibniz envisioned a characteristica universalis, a
universal symbolic calculus in which thought itself could
be embedded and manipulated. Kant reframed the prob-
lem by arguing that mathematics was a form of synthetic
a priori knowledge: not derived from experience, yet con-
stitutive of how experience could appear at all. In both
cases, we see an effort to position mathematics and lan-
guage as structural conditions of thought.

Twentieth-Century Currents

The twentieth century carried these concerns into new
domains. Husserl’s phenomenology emphasized inten-
tional structures: meaning arises through the directed-
ness of consciousness, not as a detached abstraction. Wittgen-
stein, first in the Tractatus and later in the Philosophical
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Investigations, reoriented philosophy around language,
showing how words function within “language games,”
and how meaning is embedded in use. Later thinkers,
from analytic philosophy of language to post-structural
approaches, further emphasized that meaning is neither
static nor universal, but arises through systems of differ-
ence, context, and play.

In parallel, formal linguistics (e.g. Chomsky’s theo-
ries of deep structure) and developments in logic and
computation extended these insights into scientific do-
mains. The notion that thought, language, and mathe-
matics share an underlying structure became not only a
philosophical speculation but a practical framework for
emerging computational sciences.

Positioning the Present Work

Within this lineage, the present work extends rather than
overturns. It proposes that both language and mathe-
matics may be viewed as manifolds of finite embeddings
— structured yet bounded spaces in which meaning and
form unfold. This perspective resonates with Plato’s
appeal to structure, Aristotle’s attention to categories,
Leibniz’s dream of symbolic calculus, Kant’s synthetic
conditions, Husserl’s intentionality, Wittgenstein’s lan-
guage games, and Chomsky’s formal grammars. It does
not reject these traditions but draws them into a coherent
trajectory.

What is new here is methodological: by treating lan-
guage, mathematics, and thought as finite dynamical sys-
tems, we open a way to frame their interrelation without
appealing to infinity or abstraction as ultimate grounds.
Instead, structure is understood as emergent from fi-
nite interactions and embeddings, historically continuous
with the philosophical tradition yet articulated in terms
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suitable to both contemporary science and ongoing in-
quiry.
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Chapter 2

From Sounds to
Mathematics

Historical Bridge: From Sounds to

Mathematics

Mathematics, for all its formality, did not appear fully
formed. It is the continuation of a process that began
with sound, gesture, and mark-making — with the earli-
est attempts to embed meaning into a shared space.

Sounds and Words as Embeddings

A single sound, like a syllable, is already an embedding:
it compresses breath and intention into a repeatable unit.
When such sounds become words, they provide a com-
pact container for meaning, able to be transmitted, re-
membered, and combined.

Words, then, are not arbitrary tokens but points in
a manifold of meaning. Each carries both history and
potential, linked to others by use and context.
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Figure 2.1: A simple example: the sound and word
“hello” embedded into a structured representation.

From Sentences to Diagrams

When words combine, the embedding extends further. A
sentence is a trajectory across this manifold, a way of
binding multiple meanings into a coherent whole.

From here, the step to diagrams, proto-writing, and
eventually mathematics is natural. Symbols evolve as
stable embeddings of thought, allowing ideas to be pre-
served, manipulated, and extended beyond the immedi-
acy of speech. Geometry and number arise not as ab-
stractions detached from language, but as its unfolding.

Embeddings in Modern Context

The same principle carries forward into the present. Just
as sounds and words embed meaning, so too do the repre-
sentations in contemporary artificial intelligence. Atten-
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Figure 2.2: Sentence embedding: multiple words com-
bined into a structured manifold of meaning.

tion mechanisms can be read as a form of pairwise phase
space embedding, linking the manifold of language to the
manifold of mathematics.

A fuller account of this contemporary development
is given in Appendix 8, where the embedding process
is traced into transformer architectures and modern AI
research.

This bridge, then, is not a digression but a continuity:
from sounds and words, through sentences and diagrams,
into the manifold of mathematics itself.

From Knowledge to the Manifold

In the previous part of Finite Tractus, we traced the con-
ditions under which knowledge and meaning arise within
finite, bounded systems. We observed that language,
symbols, and reasoning are not infinite reservoirs but
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structured processes: they unfold over time, with limits,
and within shared containers. Mathematics, too, must
be held to the same constraints if it is to be coherent as
part of knowledge rather than an abstraction detached
from it.

It’s of note that the impetus for this work arose from
reflections on large language models, where language it-
self behaves as a non-linear dynamical system; these ex-
plorations are developed more fully in Appendix A.
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Chapter 3

The Axioms of
Geofinitism

This next part turns more directly toward mathemat-
ics itself. Our aim is to show that mathematics is not
an ethereal realm but a manifold constructed from fi-
nite documents, processes, and embeddings. What we
call “axioms” here are not meant as eternal truths but
as rules of use—pragmatic commitments that ensure
our mathematical constructions remain consistent with
the finite, generative nature of meaning. Each axiom
closes off certain illusions (such as treating infinity as a
thing) while opening new pathways for practice (such as
treating infinity as a procedure or embedding algebra in
geometry).

The starting point is the Grand Corpus: a recog-
nition that all mathematical work exists within a finite,
document-bounded container. From this container flow
the other commitments: that existence means genera-
bility; that meaning at any time is bounded by avail-
able resources; that quantifiers must never reach beyond
what can be represented; that infinity is a process, not
a completed object; and that all symbolic work can be
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geometrically embedded at finite resolution.
These axioms are not intended to constrain explo-

ration but to give it a firmer footing. By treating math-
ematics as a submanifold of knowledge, we are not
weakening mathematics but clarifying its scope. The
traditional infinities of set theory and analysis are rein-
terpreted as useful fictions—powerful shorthand for pro-
cedures we can in principle describe within the Grand
Corpus. The payoff of this shift is a mathematics that
can still perform every task of classical reasoning, yet
without appealing to objects that lie forever beyond our
reach.

The emphasis on finite embedding has an additional
consequence: it reconnects mathematics with geometry,
not as a metaphor but as a structural reality. When we
say that a proof or algorithm has a geometric handle,
we mean that its transformations can be expressed as
finite moves in a finite-dimensional space. This opens
the door to seeing continuity, curvature, and stability not
as background assumptions but as emergent properties of
finite symbolic structures. The manifold of mathematics,
then, is not an infinite realm but a structured landscape
generated from bounded rules and procedures.

In what follows, the six axioms are stated formally
alongside their rules of use. Readers familiar with classi-
cal logic will find the correspondence clear: most the-
orems survive untouched, but the background picture
shifts. Quantifiers no longer float unanchored; infini-
ties no longer masquerade as objects; meaning no longer
presumes timeless universality. Instead, mathematics is
repositioned as a living system of finite constructions—
robust, procedural, and embeddable.

The reader is invited to treat these axioms not as bar-
riers but as instruments. They are designed to make the
manifold of mathematics more tangible, more navigable,
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and ultimately more coherent.

3.1 The Grand Corpus: Ideal Po-

tential and Actualized State

The Grand Corpus is the foundational container of Ge-
ofinitism. It is defined as the ideal, finite set of all well-
formed documents that are generable under the fixed al-
phabet A and grammar G. This set, while finite, consti-
tutes a vast combinatorial space of potential knowledge.

Crucially, at any given time t, we only have access to
an actualized subset St of this ideal Corpus. St is the
set of documents that have been generated, measured,
deduced, and recorded up to that time. It is this actual-
ized state that is “physically bounded” by the media and
computational resources available at t.

Growth of the Actualized Corpus

Growth is the process of expanding St by actualizing new
documents from the ideal Corpus. This occurs through:

Endogenous Derivation: Proof, computation, and log-
ical recombination within St.

Exogenous Transduction: Measurement of the phys-
ical world, introducing new symbolic handles and
data.

Attrition/Loss: Documents can be lost from the ac-
tualized state St (e.g., libraries burn, storage me-
dia decay, languages are forgotten). However, they
remain part of the ideal Grand Corpus as poten-
tialities. Their re-actualization is always possible
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in principle through rediscovery, re-derivation, or
re-measurement.

Geometric Embedding of the Corpus

Therefore, the “manifold of mathematics” is the geomet-
ric embedding of this ideal, generative potential. The
evolving actualized state St is our finite, time-bound, and
sometimes fallible map of this manifold. We navigate it
not by appealing to infinities, but by extending our map
through finite, verifiable steps.

3.2 The Productive Fiction of Clas-

sical Abstraction

Geofinitism does not discard the vast edifice of classi-
cal mathematics. Instead, it provides a new interpretive
framework for its most infinite-seeming claims. State-
ments that appear to reference actual infinities—such as
“the set of all real numbers” or “an infinite sequence”—
are re-interpreted as productive fictions.

These statements are not false; they are finite syn-
tactic objects that serve a crucial function as procedural
macros. They are compressed, powerful shorthands for
complex, finite truths about generability and computa-
tion.

Example: “Uncountably Many Real Num-
bers”

This is a macro that expands to a finite schema of state-
ments about the limitations of any possible finite proce-
dure. It asserts that the generative process for numbers
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is inherently inexhaustible by any single algorithm. Its
value lies in the finite, generable theorems it helps to pro-
duce within fields like computable analysis, which strictly
concern themselves with the behavior of algorithms on
representable objects.

Example: “An Infinite Sequence”

This is a macro for an open-ended generation rule. The
phrase “consider the infinite sequence (an)” is understood
within GF as:

“Here is a finite procedure f : Nrep → E
which, given any representable index n, can
produce the value an in finite time.”

The ontological commitment is to the finite procedure
f , not to a completed infinite object.

Therefore, classical mathematics is not wrong; it is a
language rich with powerful macros. These macros are
trajectories within the Grand Corpus that allow for in-
credibly efficient reasoning about the generative potential
of the system. They are “useful fictions” not because they
are untrue, but because their ontological commitment is
misdirected. They point to procedures and limitations,
not to phantasmal infinite objects.

GF makes this implicit meaning explicit. It shows
that the real power of these statements lies in their fi-
nite, procedural content, and it provides a foundation
where that content is primary, while the fictional “win-
dow dressing” of completed infinities is safely retired.

This approach combines perfectly with the extension
of internal trajectories. A mathematician uses a macro
like “uncountably many,” which is a placeholder for a
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specific type of generative procedure (e.g., diagonaliza-
tion). Applying this macro extends an internal trajectory
within the Corpus, using the existing symbolic toolkit
to generate new, finite documents (lemmas, theorems)
about the properties of finite procedures.

This entire process is endogenous growth. It is an ex-
planatory framework that reveals what classical mathe-
matics was actually doing all along: building magnificent
finite trajectories to explore a finite but unimaginably
large possibility space.

Axioms and Rules of Use

1. Grand Corpus Axiom
All mathematics exists within a finite, document-
bounded corpus. Rule of use: No argument may
appeal to structures outside what can be generated
or represented within the corpus.

2. Finite Generativity Axiom
Existence is equated with generability: a mathe-
matical object exists if and only if it can be finitely
generated. Rule of use: Assertions of existence
must specify the generative procedure.

3. Bounded Meaning Axiom
At any given time, the meaning of symbols is bounded
by finite resources of the corpus. Rule of use: Sym-
bolic references must be grounded in available re-
sources and not presume hidden infinities.

4. Quantifier Constraint Axiom
Universal and existential quantifiers range only over
explicitly representable domains. Rule of use: Quan-
tification must state its domain and remain bounded
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within it.

5. Procedural Infinity Axiom
Infinity is not a completed object but a procedure:
the indefinite extension of generative rules. Rule
of use: References to infinity must be expressed
as processes (e.g. limits, approximations), not as
completed totalities.

6. Geometric Embedding Axiom
All symbolic constructions can be given a finite ge-
ometric handle (embedding into finite-dimensional
space). Rule of use: Every proof, computation,
or object must admit a finite embedding that pre-
serves its structure for analysis.

3.3 The Dynamics of Gener-

ability: Potential vs. Actual-

ized

The Grand Corpus is a dynamic system. Its evolu-
tion is driven by two distinct generative processes:

Exogenous Growth

The introduction of new documents via measure-
ment and transduction from the physical world.
This is the incorporation of new empirical data,
new observational axioms, or new symbolic “han-
dles” for physical phenomena. It expands the Cor-
pus’s boundaries outwards.
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Endogenous Growth

The internal derivation of new documents from ex-
isting ones via logical inference, proof, and recom-
bination. This is the exploration of the dense land-
scape of implications within the current Corpus. It
increases the density and connectivity of the knowl-
edge manifold.

This dynamic view necessitates a distinction cen-
tral to Geofinitism: the difference between potential
generability and actualized generability.

Actualized Generability: A document d is actu-
alized at time t if it is a member of the current
state of the Grand Corpus, St. Its meaning is
defined and verifiable with respect to St.

Potential Generability: A document d is poten-
tially generable if there exists a finite sequence
of derivational steps (a trajectory), permissi-
ble under the grammar G and rules of the Cor-
pus, that leads from St to a state St+∆t that
contains d.

Illustrative Example: Fermat’s Last
Theorem

This framework elegantly resolves challenges like
the historical status of Fermat’s Last Theorem (FLT).

• Pre-1994: The statement of FLT was a well-
formed document in the Corpus. However, a
proof was not actualized; it was not a member
of St. Its truth was an open question.
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• Post-1994: Andrew Wiles’s work constituted
a finite generative procedure. The execution
of this procedure actualized the proof, adding
it to the Corpus and changing the state from
St to St+1. The potential trajectory was real-
ized.

The meaning of the FLT statement itself is also dy-
namic. Pre-proof, its meaning was bound to the re-
sources of St (e.g., it was known to be true for many
exponents, linked to other conjectures). Post-proof,
its meaning is now also bound to the vast deriva-
tional structure of its proof within St+1.

The “Fermat Problem” is thus dissolved. Truth
does not “flicker”; rather, the Corpus grows. The
potential for FLT was always inherent in the gener-
ative rules of the system. Wiles did not “discover”
a Platonic truth existing outside of time; he actu-
alized a possible trajectory within the finite, gener-
ative system of mathematics, a trajectory that was
always available to be walked.

Connection to Geometric Embedding

This view aligns with the Geometric Embedding
Axiom. The phase space of all potentially gen-
erable documents, though finite, is of such high
dimensionality and complexity that it presents a
practically inexhaustible landscape for exploration.
Mathematics is the process of tracing trajectories
through this structured possibility space.
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Why This Works Well for GF

(a) Solves the “Timeless Truth” Problem:
It respects the intuition that FLT “was always
true” by locating that permanence in the fixed
generative rules of the system, not in a pre-
existing, actualized infinite set.

(b) Deepens the Dynamical Analogy: It makes
the Corpus a true dynamical system with a
state space and trajectories, which is a pow-
erful conceptual tool for the “Haylett Ques-
tions” about modeling its evolution.

(c) Embraces Fallibilism: It allows for the pos-
sibility that a currently actualized “truth” (a
document in St) could be later invalidated by
a new generative act (e.g., a found contradic-
tion), transitioning the Corpus to a new state
St+1 where that document is pruned. This is a
feature, not a bug; it models the actual, finite,
and sometimes erroneous process of knowledge
creation.

(d) Connects to Computation: This is exactly
how we think of computers. A function f(x)
has a potential output for every input, but
that output does not “exist” until the compu-
tation is run and the result is stored in mem-
ory (actualized).
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Chapter 4

Geofinitism in
Practice

Dimensionality Policy

The axiom of geometric embedding establishes that
every mathematical construction within GF must
admit a finite geometric representation. To avoid
ambiguity, we introduce an explicit dimensionality
policy :

• Finite scope: All constructions must embed
into some finite-dimensional Euclidean space
Rn with n <∞.

• Minimal sufficiency: The dimension chosen
should be the smallest n adequate to represent
the construction without loss of generative fi-
delity.

• No abstract infinity: Infinite-dimensional
spaces (e.g. Hilbert spaces of unbounded ba-
sis) are not permitted as primitive; only fi-
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nite approximations or procedurally extend-
able truncations are allowed.

• Interpretive alignment: Where appropri-
ate, embeddings should align with observable
or computationally realizable coordinates (e.g.
2D or 3D geometry, finite vector spaces in
computation).

This policy ensures that dimensional commitments
remain explicit and bounded, anchoring GF in both
geometric intuition and computational feasibility.
It also prevents drift into ungrounded infinities while
retaining flexibility for higher-dimensional but still
finite embeddings.

While the Grand Corpus is formally defined as a fi-
nite set of well-formed documents, it is not static. At
any measurable time t, the Corpus occupies a finite vol-
ume yet remains procedurally extendable. Its state at
t can be understood as a point or region in a finite-
dimensional space; growth corresponds to a trajectory
through this space driven by generative acts (new ax-
ioms, proofs, symbolic constructions) and by pruning or
compression of redundancies.

This operational perspective highlights three measur-
able aspects of Corpus evolution:

• Accretion rate: the number of new documents or
derivations added per unit time.

• Structural complexity: the average length, depth,
or derivational cost of new constructs.

• Attrition rate: the rate at which older or redun-
dant constructs are compressed, discarded, or ren-
dered obsolete.
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Taken together, these measures trace a trajectory in
what may be called the knowledge manifold. In this view,
the Corpus is not only a bounded container but also a
dynamical object whose becoming is aligned with GF’s
procedural infinity and geometric embedding.

We illustrate the policy with two minimal embeddings
and a finite, resource-bounded construction in analysis.

Micro–examples (Minimal Sufficiency).

1. Representable rational in R1. For q ∈ E, the
embedding is E(q) = (q) ∈ R1. This is the small-
est space that preserves arithmetic and ordering at
finite resolution.

2. GF–group of integers in R2. For the finitely
presented group ⟨t | ⟩ (integers under addition),
embed tn 7→ (n, 0) ∈ R2, and the group law as
(n, 0) + (m, 0) = (n + m, 0). This realizes the
structure with two coordinates while keeping ver-
ification trivial (componentwise). (Low-D model
aligned with Example C.)

Worked Example: Truncated Fourier Embedding
in R2K+1. Let f : [0, 2π] → R be a procedure that
outputs f(x) on demand for representable x ∈ E. Fix a
sampling budget N and a truncation level K with 1 ≤
K < N

2
. Define sample points xj = 2πj/N for j =

0, . . . , N−1 and collect fj := f(xj) ∈ E.

Finite coefficients. Compute the truncated Fourier co-
efficients using finite sums:

a0 :=
1

N

N−1∑
j=0

fj, ak :=
2

N

N−1∑
j=0

fj cos(kxj), bk :=
2

N

N−1∑
j=0

fj sin(kxj),
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for k = 1, . . . , K, all over E (finite arithmetic, bounded
precision).

Embedding. Set

E(f) =
(
a0, a1, b1, a2, b2, . . . , aK , bK

)
∈ R2K+1.

This realizes a finite geometric handle of f at resolu-
tion (N,K); by the Dimensionality Policy we choose the
smallest 2K+1 that meets the task’s accuracy.

Verification and resource bounds. Given a target
tolerance ε ∈ E, a verifier Vε checks uniform approxima-
tion on the grid:

max
0≤j<N

∣∣∣∣∣ fj − (
a0 +

K∑
k=1

[
ak cos(kxj) + bk sin(kxj)

])∣∣∣∣∣ < ε.

All computations are O(NK) arithmetic in E. Increasing
(N,K) is a procedural refinement; no appeal to an infinite
basis is required.

Dimensional choice. Choose D(f) = 2K+1 ≤ Dmax

with K picked by a finite model–selection rule (e.g., grid
CV or an a priori bound from problem physics). Sim-
pler signals admit smaller K (hence smaller D); complex
signals may require larger K, still within finite budget.
Hierarchical or sparse encodings can further reduce stor-
age and compute.

As a research note, we record a cautious extension
that complements the policy without changing it.
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Fractal Finitism (Research Note)

Motivation. Beyond choosing a minimal inte-
ger dimension D(d) ≤ Dmax for each document
d, some GF objects (e.g., deeply nested proofs
or iterative constructions) exhibit scale-dependent
structure. In such cases it can be useful to esti-
mate an effective (possibly non-integer) dimension
deff of the symbolic/derivational geometry while
still embedding into a finite Euclidean host. This
preserves the axioms while offering finer diagnos-
tics of complexity. (Hybrid “fixed Dmax, vari-
able subspaces” aligns with our Grok discussion.)
:contentReference[oaicite:0]index=0

Estimation (finite procedures). Let G(d) de-
note a finite graph/forest extracted from d (e.g., a
derivation or dependency tree). Using grids/ball
covers at scales ε ∈ E we can compute:

• Box-counting estimate: dbox(ε) := logN(ε)
log(1/ε)

,

with N(ε) the number of ε-boxes needed
to cover G(d)’s embedding; report a sta-
ble slope over a finite scale-range. :contentRef-

erence[oaicite:1]index=1

• Correlation estimate: dcorr(ε) from pair-
counts within radius ε on G(d)’s nodes; again
reported over a finite, representable range.
:contentReference[oaicite:2]index=2

Use cases. (i) Document-level: choose D(d)
with awareness of deff—simple rationals → R1;
GF-group example → R2; complex proofs may
require higher D, but often with deff < D in-
dicating sparse/hierarchical structure. :contentRefer-

ence[oaicite:3]index=3 (ii) Corpus-level: analyze growth
trajectories of the Grand Corpus—rates of ac-
cretion/attrition may display power-law behavior,
suggesting fractal-like organization in the knowl-
edge manifold. :contentReference[oaicite:4]index=4

Feasibility. Estimation remains finite (bounded
scales, bounded samples), and embeddings can ex-
ploit sparse or hierarchical coordinates to keep
storage and verification tractable; when deff <
D, compression opportunities arise. :contentRefer-

ence[oaicite:5]index=5 :contentReference[oaicite:6]index=6
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rootε1 =1.5 boxes N(ε1) = ?

ε2 =0.75 boxes N(ε2) = ?

Box-counting sketch
cover at ε1
cover at ε2
grid

Figure 4.1: Box-counting on a finite derivation tree:
count covering boxes N(ε) at two scales. An effective
slope from logN(ε) vs. log(1/ε) over finite scales esti-
mates dbox.

Reader’s Guide

The presentation begins with formal definitions and ax-
ioms establishing the Grand Corpus, bounded seman-
tics, and the procedural treatment of infinity. These ax-
ioms form the minimal ontological commitments of Ge-
ofinitism (GF) and are stated in a self-contained, oper-
ational style. Following this, worked examples illustrate
how core concepts of analysis — such as limits and in-
tegrals — are reformulated within GF using only rep-
resentable quantities and finite verification procedures.
The final sections explore the broader implications of
GF for algebra, geometry, and the philosophy of mathe-
matics, highlighting its compatibility with physical com-
putation and its divergence from classical, infinity-based
foundations.
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Definition 1 — Grand Corpus

Alphabet and Grammar. Fix a finite alphabet
A and a finite grammar G.
Documents. A document is a finite sequence of
symbols from A that is well-formed under G.
Grand Corpus. The Grand Corpus is the totality
of all such well-formed documents together with
their finite derivations (proof trees, computations,
and verification procedures). The Grand Corpus
is physically bounded : only documents that can,
in principle, be recorded, stored, or transmitted
within the limits of real media are included.

Axiom 1 — Bounded Semantics

All quantifiers range only over definable, finitely
representable objects in the Grand Corpus. If D is
an intended domain,

∀x ∈ D means ∀x [x is definable and finitely representable],

∃x ∈ D means ∃x [x is definable and finitely representable].

In particular, “exists” entails the presence of a fi-
nite recipe (program or construction) that yields
the object.

Axiom 2 — Procedural Infinity

The token “∞” is not a completed object but
an abbreviation for an open-ended procedure
(schema). For example,

n→∞ reads as “for any representable bound B, consider n with n > B”.
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No single object “∞” exists in the Grand Corpus;
only finite instances of extendable procedures do.

Here12

Axiom

3 — Geometric Embedding Principle: Every doc-
ument d in the Grand Corpus admits a finite-
resolution geometric embedding

E(d) ⊂ RD

with fixed finite dimension D, such that:

1. E(d) is determined entirely from the fi-
nite symbol sequence of d (including
parse/structure under G).

2. Small symbol-level perturbations induce
bounded (continuous) changes in E(d).

3. Computations on d correspond to finite
transformations on E(d) that are themselves
representable in the Grand Corpus.

Definition

2 — Representable Numbers: Let E denote
the set of representable rationals (e.g., finite-
length decimals or rationals with bounded numera-
tor/denominator encodings) available in the Grand
Corpus. All numerical statements in this work
quantify over E unless otherwise stated.
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Example

A — Finite Limit of f(x) = x2 at a We verify

FLIMx→ax
2 = a2

under Axiom 1 (Bounded Semantics) using
representable rationals E.
Target: Given ε ∈ E, produce δ ∈ E and a finite
verifier Vε,δ such that for all x ∈ E with 0 < |x −
a| < δ, we have |x2 − a2| < ε.
Finite algebraic bound. For x, a ∈ E,

|x2 − a2| = |x− a| |x + a|.

Fix a representable bound B ∈ E with B ≥ |a|+ 1
(e.g., B := |a|+ 1).
Pick

δ := min{1, ε/(2B)} ∈ E.

Then whenever 0 < |x− a| < δ,

|x+ a| ≤ |x− a|+ 2|a| < δ + 2|a| ≤ 1 + 2|a| ≤ 2B,

so
|x2 − a2| < δ · 2B ≤ ε.

Finite verifier Vε,δ. Given ε, compute B, δ as above
(finite arithmetic on E). To check x:

1. Verify 0 < |x− a| < δ (rational arithmetic).

2. Compute |x2 − a2| and compare with ε.

All steps are finite in E, hence the limit holds in
GF.
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Example

B — Finite Riemann Integral of f(x) = x2 on [0, 1]
We verify

FINT1
0x

2 dx = 1
3

to within any ε ∈ E using explicit finite partitions.
Partition scheme (dyadic). For integer n ≥ 1, let
Pn = {xi = i/n | i = 0, . . . , n}. On [xi, xi+1], width
∆ = 1/n:

mi := min{x2 : x ∈ [xi, xi+1]} = x2
i ,

Mi := max{x2 : x ∈ [xi, xi+1]} = x2
i+1.

Lower and upper sums:

L(Pn) =
1

n3

n−1∑
i=0

i2, U(Pn) =
1

n3

n∑
i=1

i2.

Finite bound on the gap.

U(Pn)− L(Pn) =
n2

n3
=

1

n
.

Choosing n := ⌈1/ε⌉ ∈ E ensures U(Pn)−L(Pn) <
ε.
Common value within ε. Take Sn := 1

2
(L(Pn) +

U(Pn)). Since the gap is < ε, Sn approximates the
integral within ε.
Exact value. GF admits the finite antiderivative
schema for polynomials:

d

dx

(
x3

3

)
= x2,

and the finite Fundamental Theorem for polyno-
mials yields ∫ 1

0

x2 dx ≡ 1

3
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as a representable rational.
Procedure Rε. Given ε: set n := ⌈1/ε⌉, form Pn,
compute L(Pn), U(Pn), output Sn. All steps are
finite in E.

Example Corollary — GF continuity and in-
tegrability

From Example A, x 7→ x2 is GF-continuous (finite
ε–δ semantics). On a compact, representable inter-
val, GF-continuous polynomials are GF-integrable
by the dyadic refinement scheme of Example B.
Both statements are constructive within GF.
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Chapter 5

Broader Implications

The formalisation of limits, integrals, and other core con-
structions within Geofinitism invites a reassessment of
the scope and methods of mathematics itself. If all math-
ematical objects are finite documents in a physically bounded
Grand Corpus, then traditional distinctions between the
“pure” and the “applied” become less about ontology and
more about context of use. Algebraic systems, geometric
spaces, and even probabilistic frameworks can be recast
in operational terms, ensuring that every theorem cor-
responds to a construction that could, in principle, be
carried out within finite resources. This reframing also
has philosophical consequences: questions about the ex-
istence of infinite sets or uncomputable numbers are re-
placed by inquiries into the expressiveness, efficiency, and
stability of finite symbolic systems. In the sections that
follow, we examine these consequences for key branches
of mathematics and explore how GF interacts with both
classical theory and modern computational practice.
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Section Outline

To guide the discussion, we divide the broader implica-
tions of Geofinitism (GF) into the following subsections:

1. Implications for Algebra
How algebraic structures — from groups and rings
to vector spaces — can be reformulated under bounded
semantics. We examine finite presentations, opera-
tional definitions of morphisms, and the impact of
removing actual infinity from algebraic reasoning.

2. Implications for Geometry
The reinterpretation of geometric spaces as finite
combinatorial or coordinate descriptions. Includes
the adaptation of topological notions (open sets,
coverings) to finite coverings and constructive point
generation.

3. Computational Perspectives
The alignment of GF with physical computation.
This includes complexity considerations, error bounds,
and the compatibility of GF proofs with algorith-
mic verification systems.

4. Philosophical Perspectives
The ontological and epistemological consequences
of a mathematics built entirely from finitely repre-
sentable objects. Addresses shifts in the meaning
of “existence” and “proof,” and the replacement of
abstract infinities with procedural constructs.

5. Bridging to Classical Mathematics
Identifying where GF is conservative over finite the-
orems of classical mathematics, where it diverges,
and the implications for pedagogy and research.
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5.0.1 Implications for Algebra

Within Geofinitism (GF), algebraic structures are defined
and reasoned about entirely within the Grand Corpus.
Every element of a structure is a definable, finitely rep-
resentable object, and all operations are implemented as
finite procedures. This means that infinite carrier sets
— such as the full set of integers or real numbers — are
replaced by operationally specified domains consisting of
representable elements and open-ended extension proce-
dures.

Finite Presentations. Groups, rings, and other alge-
braic structures are introduced via finite presentations:
a finite set of generators together with a finite list of re-
lations. For example, a GF-group G is given as:

G = ⟨ g1, . . . , gk | r1, . . . , rm ⟩

where each gi is a symbol in the Grand Corpus and each
relation rj is a finite word over {g±1

i } that equates to
the identity. All derived operations (e.g., group multi-
plication, inversion) are finite procedures acting on finite
words, with proofs of properties such as associativity car-
ried out using bounded verification.

Operational Morphisms. A homomorphism between
two GF-structures is a finite procedure that maps each
generator of the source to a definable element of the tar-
get, preserving the defining relations. Composition of
homomorphisms is performed by explicit substitution,
again as a bounded computation.

Elimination of Completed Infinity. Classical alge-
bra often treats carrier sets as completed infinities (e.g.,
Z, Q, R). In GF, such sets are replaced by:

43DRAFT V1.1 September 2025



The manifold of mathematics

1. The finite subset of representable elements in the
Grand Corpus, and

2. An open-ended generation procedure that can pro-
duce new representable elements as needed, subject
to physical limits.

Statements about “all elements” of a set mean “all rep-
resentable elements” unless explicitly parameterised by a
generation bound.

Example C — A GF-Group: Integers under
Addition

Structure: Let G = ⟨t | ⟩ be the free GF-group
on one generator t, with the group operation de-
noted additively. Elements are finite words tn with
n ∈ Zrep, where Zrep ⊂ E denotes the representable
integers in the Grand Corpus.
Operation: Addition is concatenation of words:
tm + tn := tm+n, where m + n is computed in Zrep

using finite integer arithmetic.
Identity and Inverse: The identity is t0, the
empty concatenation. The inverse of tn is t−n, com-
puted by sign negation in Zrep.
GF Proof of Associativity: For all repre-
sentable m,n, p ∈ Zrep:

(tm+tn)+tp = t(m+n)+p = tm+(n+p) = tm+(tn+tp)

where equality of exponents follows from associa-
tivity of addition in Zrep, proven by finite arith-
metic rules in the Grand Corpus.
This shows that (Zrep,+) is a GF-group — the
finite counterpart of the classical infinite cyclic
group.
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Broader Impact. This approach ensures that every
algebraic statement in GF is grounded in operations that
could, in principle, be executed. It also provides a di-
rect bridge to computational algebra systems, where fi-
nite presentations and bounded operations are already
the norm. By removing the reliance on completed infinite
sets, GF aligns algebraic theory with the realities of com-
putation while preserving the expressive power needed for
practical mathematics.

Implications for Geometry

In Geofinitism (GF), geometric spaces are described by
finite combinatorial or coordinate data recorded in the
Grand Corpus. Points, lines, and higher-dimensional ob-
jects are represented by tuples of representable numbers,
or by finite construction sequences that generate them.
Topological and metric concepts are reinterpreted to en-
sure that coverings, neighbourhoods, and distances are
all finitely representable and operationally testable.

Finite Coordinate Models. A geometric space in GF
is specified by:

1. A finite set of coordinate charts or combinatorial
descriptions.

2. Finite procedures for computing distances, adja-
cency, or incidence between elements.

For example, a polygon is given by a finite list of vertex
coordinates in E2, together with a finite adjacency list
for its edges.
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Constructive Topology. Open sets are defined as fi-
nite unions of basic regions with representable bound-
aries (e.g., rational disks or rectangles in En). A “cover”
is finite by definition, and compactness is a structural
property of the description: a space is compact if its de-
scription includes a finite covering by such basic regions.

Metric Structures. Distances are computed using fi-
nite arithmetic on E. The triangle inequality, continuity
of distance, and other metric properties are established
through finite proofs within the Grand Corpus.

Example D — GF-Triangle Perimeter

Structure: Let △ABC be a triangle in the plane,
with vertices:

A = (xA, yA), B = (xB, yB), C = (xC , yC)

where all coordinates are in E.
Distance Procedure: For any two points P =
(xP , yP ) and Q = (xQ, yQ) in E2, define:

d(P,Q) =
√

(xQ − xP )2 + (yQ − yP )2

where subtraction, squaring, addition, and the
square root are finite procedures on E (square root
taken to a representable precision).
Perimeter Computation:

Perimeter(△ABC) = d(A,B) + d(B,C) + d(C,A)

Each term is computed exactly or to a repre-
sentable precision, and the total is in E.
GF Verification: Since d(·, ·) is computed en-
tirely within E, the perimeter procedure is a finite
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computation in the Grand Corpus. The symmetry
and positivity of d are verified directly from the
finite arithmetic rules of E.
Thus △ABC is fully described and measurable in
GF without any appeal to infinite point sets or
continuous real lines.

Broader Impact. GF geometry aligns naturally with
computer graphics, CAD systems, and computational ge-
ometry, where finite descriptions and bounded-precision
computations are already standard. By grounding ge-
ometric reasoning in finitely representable data, GF of-
fers a foundation in which classical geometric results can
be rederived with explicit control over construction and
measurement, avoiding reliance on idealised continua.

Computational Perspectives

Geofinitism (GF) is inherently aligned with the realities
of computation, since its ontology is restricted to finitely
representable objects and finite procedures. Every math-
ematical statement in GF can, in principle, be realised
as an algorithm that runs within physical resource limits,
and every proof can be checked mechanically within the
Grand Corpus.

Complexity Awareness. Because all GF construc-
tions are procedural, complexity analysis is built into the
framework. Given any operation, one can measure its
cost in time and space relative to the size of the input rep-
resentation. GF encourages proofs and definitions that
not only assert existence but also specify bounds on the
computational resources needed to construct the object.
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Algorithmic Verification. Proofs in GF are finite deriva-
tion trees and can be verified by automated systems with-
out appeal to meta-level infinite reasoning. This opens a
direct bridge between GF mathematics and formal veri-
fication tools, theorem provers, and proof assistants.

Error and Stability. Since numerical computations in
GF use representable numbers E, rounding and trunca-
tion are explicit parts of the model. Stability analyses,
condition numbers, and error bounds are therefore in-
tegrated into proofs, ensuring that results are not only
correct in an idealised sense but also robust under finite
precision.

Example E — GF Matrix Inversion with Re-
source Bounds

Structure: Let M be an n×n matrix over E with
nonzero determinant in E. The task is to compute
M−1 to a target precision ε ∈ E.
Procedure:

1. Compute det(M) via a finite algorithm (e.g.,
Gaussian elimination) with arithmetic in E.

2. If | det(M)| < δmin for some representable
threshold, report instability (ill-conditioned
input).

3. Use the adjugate formula or elimination-
based inversion to compute an approximation
M̃−1.

4. Verify ∥MM̃−1 − I∥∞ < ε using finite arith-
metic on E.
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Resource Bound: The above procedure runs in
O(n3) operations in E, with storage proportional
to O(n2). Both the algorithm and its complexity
analysis are representable in the Grand Corpus.
GF Verification: Correctness follows from finite
linear algebra over E, and the error bound is an
explicit checkable inequality in E.

Broader Impact. GF’s built-in compatibility with al-
gorithmic execution means that proofs and computations
are naturally exportable to software and hardware sys-
tems. This offers a pathway toward a fully constructive
mathematical library in which every theorem is backed
by an executable, resource-bounded procedure, unifying
theory and implementation.

Having established the finite reformulation of limits,
we now illustrate how a classical cornerstone of calculus—
the Intermediate Value Theorem—admits a direct ana-
logue within GF.

Finite Intermediate Value Theorem (GF-
IVT)

In classical analysis, the Intermediate Value Theorem
(IVT) states that if a continuous function f takes val-
ues of opposite sign at two points a and b, then there
exists a c ∈ (a, b) such that f(c) = 0.

Within Geofinitism, continuity is reformulated as pro-
cedural continuity : a function is continuous on [a, b] if,
for any ϵ > 0, one can construct a finite partition of [a, b]
with mesh less than ϵ such that adjacent function values
differ by less than ϵ. No appeal to an infinite set of points
is required, only a generable procedure for constructing
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successively finer partitions.
Let f be procedurally continuous on [a, b] with f(a) <

0 and f(b) > 0. Then there exists a finite partition {x0 =
a, x1, . . . , xn = b} such that for some xi and xi+1, the
function values satisfy

f(xi) ≤ 0 and f(xi+1) ≥ 0.

Hence a root is bracketed within a finite subinterval [xi, xi+1].
Example: Consider f(x) = x3−2 on [1, 2]. We compute
f(1) = −1 and f(2) = 6. Partitioning into ten equal
intervals, we find that f(1.25) = −0.05 and f(1.26) =
0.002. The GF-IVT guarantees a zero in [1.25, 1.26], a
finite bracketed interval. Classical existence is here re-
placed by constructive localization.

This formulation preserves the spirit of IVT while
aligning with GF principles: existence is replaced by fi-
nite bracketing, infinity is procedural, and the result is
always geometrically embeddable as a bounded construc-
tion.

A finite bracketing view of f(x) = x3 − 2 on [1, 2] is
shown in Fig. 5.1.

Philosophical Perspectives

Geofinitism (GF) redefines core philosophical questions
in mathematics by grounding all objects and proofs in
finite, physically realisable representations. This shift re-
frames long-standing debates over the existence of math-
ematical entities, the nature of proof, and the role of
infinity.

Ontology: What Exists in GF? In GF, to exist is
to be definable and finitely representable in the Grand
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x

f(x)

1 1.251.26 2

f(1)=−1

f(2)=6

f(1.25)≈−0.05 f(1.26)≈0.00

[1.25, 1.26]
−

+

f(x) = 0

Finite bracketing:
find xi < xi+1 with
f(xi) ≤ 0 ≤ f(xi+1).
Here: [1.25, 1.26]

Figure 5.1: GF-IVT bracketing for f(x) = x3 − 2 on
[1, 2]. A finite grid refinement locates a sign change and
brackets the root within [1.25, 1.26], replacing classical
existence with constructive localization.

Corpus. There are no completed infinite sets, no uncom-
putable numbers, and no idealised continua. Instead,
mathematical universes are composed of explicit sym-
bolic objects and the finite procedures that operate on
them. This operational ontology makes GF agnostic about
metaphysical realism: the framework works equally well
whether one views the Grand Corpus as a physical ar-
tifact, a shared human construct, or an abstract formal
system.

Epistemology: What Counts as Proof? A proof
in GF is a finite derivation tree in the proof system of
the Grand Corpus. Verification is an internal activity:
given a purported proof, one checks each step by finite
means using the system’s rules. This eliminates the need
for external justification via infinite meta-reasoning and
ensures that every theorem can be validated in principle
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by a finite agent.

The Role of Infinity. In GF, “infinity” is retained as
a procedural concept — a macro for “extend as needed.”
This allows mathematicians to use familiar notation and
modes of reasoning while keeping the ontology finite. It
also resolves philosophical tensions between the practical
use of infinite concepts and the physical impossibility of
manipulating actual infinities.

Example F — Procedural Infinity in Prac-
tice

Classical statement: “The decimal expansion of
1
3

is 0.333 . . . forever.”
GF restatement: For any ε ∈ E with 0 < ε < 1,
output a finite decimal dε such that |dε − 1

3
| < ε.

The “. . .” is not a completed infinite expansion but
a procedure that, when given a bound ε, produces
enough 3’s to achieve the target precision.
Verification: In GF, the procedure “append k
copies of the digit 3 after the decimal point” is
finite for each input ε, and the correctness of dε is
checkable in E.

Broader Impact. By explicitly separating procedural
infinity from actual infinity, GF allows mathematics to
retain its expressive toolkit while avoiding ontological
commitments that are physically or constructively prob-
lematic. This offers a coherent philosophical stance that
bridges constructive mathematics, computational prac-
tice, and the pragmatic realities of mathematical work.

From here, the document proceeds with the definition
of ”physical reality” as understood within Geofinitism, a
concept that underpins the entire framework and con-
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nects it to the finite nature of measurement and compu-
tation.
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Physical Geofinitism

Measurements and Transduction

In Geofinitism (GF), the term ”physical reality” is not an
appeal to an external, pre-existing absolute, but a precise
statement about the nature of our interaction with the
world. It is grounded in the principle that all knowledge
is mediated by finite processes of measurement and trans-
duction. A physical object or phenomenon is known only
through the finite outputs of a transducer—a device or
process that converts a continuous input into a finite, dis-
crete, and representable signal. A word, a sensor reading,
or a bit of data is, in this sense, a transducer’s output.
The very act of naming a thing is to apply a finite sym-
bolic ”handle” to it. This operational definition of ”phys-
ical” is a core tenet of GF, ensuring that the framework
remains anchored to what can be finitely measured and
known.

This stance has direct implications for the Grand Cor-
pus. The Corpus, as the container of all mathematics,
is bounded by the practical limits of physical represen-
tation. This boundary is not static; it is procedurally
extendable as new transducers and measurements—new
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knowledge—are created. This process of extending the
corpus through finite interactions is how new meaning is
introduced. Every new document or derivation is a tra-
jectory of meaning within the knowledge manifold, with
its existence tied to its embeddability in a geometric ref-
erential frame.

Mathematical Framing

Within GF, a transducer can be modelled as a function
T that maps a continuous, possibly infinite-dimensional,
state space X to a finite set of representable outputs E
in the Grand Corpus.

T : X → Efinite (6.1)

The physical world, in this view, is the domain of all pos-
sible such transducers and their finite outputs. A ”mea-
surement” is the application of such a function, which
yields a finite, representable value.

The indeterminacy of these transducers—the fact that
a range of inputs can produce the same finite output—is
inherent to this process. This indeterminacy is a source of
semantic uncertainty, which can be measured and man-
aged within the framework. New meaning, or the ”gen-
eration” of new knowledge, corresponds to a generative
act that resolves this uncertainty by creating a new, ver-
ifiable, and finitely representable output in the Corpus.
This process enables the Grand Corpus to expand dy-
namically over time, with each addition being a finite,
falsifiable model of a portion of reality.
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Bridging to Classical
Mathematics

Bridging to Classical Mathematics

While Geofinitism (GF) departs from classical mathe-
matics in its treatment of infinity and existence, it pre-
serves a large portion of classical results when those re-
sults can be expressed and proven using only finite ob-
jects and procedures. This makes GF both a conservative
extension over the finite fragment of classical mathemat-
ics and a fertile ground for new methods tailored to phys-
ically realisable computation.

Conservativity Over Finite Theorems. Any classi-
cal theorem whose proof involves only:

1. Finitely many objects, each with a finite represen-
tation, and

2. Finite, explicitly given operations,

can be reproduced in GF without alteration. Examples
include:
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• The binomial theorem for fixed finite n.

• The Euclidean algorithm for greatest common di-
visors.

• Finite graph theory results (e.g., Euler’s theorem
on connected planar graphs).

Points of Divergence. Classical theorems that rely
essentially on:

1. Completed infinite sets (e.g., R as the set of all real
numbers).

2. Unbounded quantification over infinite domains.

3. Non-constructive existence proofs without effective
procedures.

require reformulation in GF. Typical examples include:

• The Bolzano–Weierstrass theorem (rephrased in GF
to refer to finite sequences and procedural subse-
quence extraction).

• Cantor’s diagonal argument (interpreted as gener-
ating a schema of approximations rather than a
completed object).

Pedagogical Consequences. Teaching mathematics
within GF shifts emphasis from manipulating idealised
infinite objects to designing and reasoning about finite
procedures. Students encounter classical-looking nota-
tion but quickly learn that all quantification and con-
struction have explicit operational meaning.
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Example G — GF Binomial Theorem for
Fixed n

Classical statement: For n ∈ N and variables
x, y,

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

GF interpretation: Let n ∈ Nrep ⊂ E be a rep-
resentable non-negative integer. The binomial co-
efficients

(
n
k

)
are computed in E via:(

n

k

)
=

n!

k!(n− k)!
,

where factorial is defined recursively for repre-
sentable inputs.
Verification: Proof by induction on n is finite
and uses only arithmetic in E. All terms in the
expansion are explicitly representable polynomials
in E[x, y], hence the theorem holds in GF exactly
as in classical mathematics.

Broader Impact. By making explicit where it agrees
with and where it departs from classical mathematics,
GF provides a clear map for mathematicians transition-
ing to a finite foundation. This clarity ensures that ex-
isting knowledge can be carried over where valid, and
that the necessary adaptations are transparent and well-
motivated.
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Geofinitist Interpretation of Clas-

sical Concepts

This section illustrates how common classical mathemat-
ical concepts are operationally reinterpreted within the
finite, procedural ontology of Geofinitism. The classical
formulation is retained as a powerful and useful macro,
while its underlying meaning is grounded in finite gener-
ability and geometric embedding.

The complete set of natural numbers, N = {0, 1, 2, 3, . . . }:
The open-ended procedure for generating natural
numbers. NGF is the set of all finitely representable
natural numbers. The symbol “N” is a macro re-
ferring to the finite rule of succession (n → n + 1)
and its unbounded application.

Universal quantification, ∀n ∈ N, P (n): A finite, ver-
ifiable generation-and-check procedure. The claim
asserts that for any number n that can be gener-
ated and represented within the Grand Corpus, the
finite verification procedure VP (n) confirms P (n).

The set of all real numbers, R: The ideal, finite po-
tential for measurement resolution. A macro refer-
ring to the procedural limit of ever-finer finite ap-
proximations (e.g., longer decimals, smaller ratio-
nal intervals). No single completed set is invoked.

An infinite sequence, (an)∞n=1: A finite algorithm (pro-
gram). A function f : Nrep → E that, given any
finitely representable index n, outputs the term an
in finite time and with finite resources.

An infinite sum (series),
∑∞

n=1 an: A convergence pro-
cedure and its output. The finite algorithm for
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computing the partial sum SN =
∑N

n=1 an, coupled
with a verification procedure that, for any given er-
ror tolerance ϵ > 0, can find a finite N such that
|SN − L| < ϵ.

An infinite-dimensional Hilbert space (e.g., ℓ2): A
family of finite-dimensional truncations plus exten-
sion rules. A schema for working with finite vectors
of increasing dimension n, where operations (inner
product, norm) are defined at each finite level, and
convergence is managed procedurally.

“There exist uncountably many real numbers.” A
macro for a finitary incompressibility result. A
shorthand for the finite, proven theorem that no fi-
nite algorithm can enumerate all representable num-
bers. It is a statement about the limitations of gen-
erative procedures, not an inventory of a vast set.

Continuity of a function, (ϵ–δ definition): A finite
correspondence between approximation procedures.
A finite verifier Vϵ that, for any target precision ϵ,
can generate a tolerance δ such that for any repre-
sentable input within δ of a, the output is within ϵ
of f(a).

Proof by contradiction (e.g., assume
√

2 is rational):
A finite procedure for excluding possibilities. A
valid finite derivation that shows the assumption
leads to a contradiction (e.g., 2b2 = a2 having no so-
lution in Nrep). This proves the finitarily-generable
statement “no rational square equals 2.”
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Table 7.1: Geofinitist reinterpretation of classical math-
ematical concepts. Classical formulations are retained as
macros, but their meaning is grounded in finite genera-
bility and procedures.
Classical Concept GF Interpretation (Summary)
N = {0, 1, 2, 3, . . . } Open-ended generation rule; NGF is the

set of finitely representable naturals.
Macro = rule n→ n + 1.

∀n ∈ N, P (n) Finite generation-and-check procedure;
for any representable n, a verifier VP (n)
confirms P (n).

R (all real numbers) Finite potential of measurement reso-
lution; macro for ever-finer approxima-
tions, not a completed set.

Infinite sequence (an) Finite algorithm f : Nrep → E that pro-
duces an for any representable n.

Infinite sum
∑

an Convergence procedure; compute SN ,
verify that for given ϵ, some finite N
satisfies |SN − L| < ϵ.

Hilbert space (e.g., ℓ2) Family of finite-dimensional trunca-
tions with extension rules; operations
defined at each finite level.

“Uncountably many
reals”

Macro for incompressibility: no fi-
nite algorithm can enumerate all rep-
resentable numbers.

Continuity (ϵ–δ) Finite verifier Vϵ generates δ ensuring
finite approximations hold.

Proof by contradiction Finite exclusion procedure; derivation
shows assumption collapses (e.g.,

√
2

not rational).
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Chapter 8

The Open Questions

Closing the Arc

The exploration of algebra, geometry, computation, phi-
losophy, and classical correspondence within Geofinitism
demonstrates the framework’s breadth and coherence.
By grounding all mathematical activity in finitely rep-
resentable objects and finite procedures, GF provides a
unified foundation that preserves much of classical math-
ematics while replacing its reliance on actual infinity with
operational constructs. The approach is simultaneously
practical, aligning with computational realities, and philo-
sophically robust, offering a clear ontology and episte-
mology for mathematics in a finite universe. With these
broader implications established, we are positioned to
draw together the central themes of GF, reflect on its
potential future development, and consider its role in re-
shaping both the practice and teaching of mathematics.
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The Open Questions: A Research Pro-
gram for the Grand Corpus

In contrast to the classical Hilbert problems, which sought
to establish the foundations of mathematics on a static,
infinite basis, the following program, herein referred to
as The Haylett Questions, proposes a new set of chal-
lenges for a dynamic, finite, and measurable framework
of knowledge. These questions arise from the reframing
of classical paradoxes as issues of static dimensionality
and seek to explore the emergent properties of a dynamic
knowledge manifold.

Evolution of the Grand Corpus: Can a ”dy-
namical equation” be derived to model the evolution of
the Grand Corpus as a system of accretion and attri-
tion? This equation could potentially incorporate vari-
ables such as accretion rate (external inputs), structural
complexity, and attrition rate (obsolescence). The goal
is to predict phase transitions in knowledge, such as the
emergence of new paradigms, by applying principles akin
to the thermodynamics of knowledge.

The Geometry of Transduction Across Mani-
folds: How can the geometry of the transduction pro-
cess be formalized, in which physical measurements are
encoded into linguistic or mathematical representations?
The challenge lies in defining a ”transduction metric”
that measures the fidelity of meaning and information as
it is mapped from a physical manifold (e.g., a particle’s
position) to a linguistic token and, subsequently, to a
mathematical proof within finite, geometric embeddings.

A Unified Model for Language, Mathematics,
and Physics: What is the minimal embedding dimen-
sion required to capture the full range of interactions be-
tween language, mathematics, and physics within a uni-
fied manifold? This inquiry seeks to apply principles of
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fractal finitism to estimate the effective dimension of this
unified space and to model complex phenomena, such as
quantum entanglement or linguistic ambiguity, within its
finite constraints.

Optimizing AI for Finite, Geometric Embed-
dings: How can AI architectures be optimized to re-
construct a language attractor within finite, geometric
embeddings, potentially by leveraging delay embeddings
and forgoing the use of traditional softmax or positional
encodings? This question extends to the direct embed-
ding of experimental physics data into a finite phase
space for the purposes of prediction and classification.

New Paradoxes of a Dynamic, Finite Frame-
work: What new challenges or ”finite paradoxes” emerge
within a dynamic, time-bound framework? By dissolving
classical paradoxes that are predicated on static concepts
of undecidability, new questions arise concerning the pro-
cedural limits of generability within the Corpus. How can
a system handle a statement that is undecidable within
a given resource bound?

The Temporal Shape of the Knowledge Mani-
fold: How does time shape the manifold of knowledge in
a framework where procedural infinity is central? This
involves developing a temporal logic in which theorems
are understood as trajectories evolving over time, and
exploring how this aligns with the treatment of time in
physical theories like relativity.

The Physics of the Strange Attractor: Can the
virtuous circle uniting mathematics, language, and re-
ality be modeled mathematically as a strange attrac-
tor? This would involve a low-dimensional projection
of a higher-dimensional knowledge space and an explo-
ration of its relationship to physical attractors in chaos
theory, potentially leading to a new physics where reality
is a finite, evolving Corpus.
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These Open Questions constitute a call to action for
a new generation of researchers. They are not focused on
the conquest of infinite truths but rather on the system-
atic exploration and refinement of the finite, dynamic,
and measurable world that the Grand Corpus represents.

The Grand Corpus and the Haylett Completeness The-
orem The Grand Corpus, understood as a finite yet dy-
namically evolving system of representable documents,
can be posited as being logically complete. This thesis
argues that all meaningful statements within this sys-
tem can be generated, verified, or approximated through
finite, procedural means. This perspective re-evaluates
traditional notions of knowledge and infinity by ground-
ing them within a dynamic, self-contained system.

The Haylett Completeness Theorem states that the
Grand Corpus is logically complete in the sense that all
coherent truths and meaningful expressions can be rep-
resented, not through reliance on actual infinities, but
through procedural ones. These procedural infinities are
understood as extendable rules and processes embedded
within the finite system itself. The Corpus’s growth is
driven by two distinct mechanisms: the assimilation of
finite measurements, or external inputs, and the internal
generation of new knowledge through recombinations and
cross-linking of existing documents. This framework al-
lows the Corpus to capture all knowable truths without
necessitating the inclusion of infinite objects or concepts
as fundamental elements.

This theorem carries several significant implications
for the nature of knowledge. Firstly, it asserts that fini-
tude is sufficient, suggesting that every mathematical,
linguistic, or physical truth can be embedded within a
finite-dimensional space. Secondly, it offers a novel res-
olution to paradoxes such as Gödel’s incompleteness, by
reframing ”undecidability” not as a fundamental logical
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flaw, but as a time- and resource-bound limitation within
the Corpus. The system’s dynamic nature ensures that
growth is a tangible process, expanding via finite mea-
surements from external reality and through internal re-
combinations, which together form a strange attractor
that is both finite in its state and infinitely extensible
in its process. Finally, this model suggests that while
imagination within the Corpus is unbounded in scope, its
products remain grounded by the finite rules governing
the system, thereby constituting a robust, self-sustaining
framework for knowledge creation.

In conclusion, the Haylett Completeness Theorem of-
fers a profound shift in perspective. It moves away from
the pursuit of unattainable, actual infinities and instead
proposes that all necessary components for a comprehen-
sive understanding of reality are present within the finite,
measurable world, with procedural extensions allowing
for infinite potential.

Conclusion

Geofinitism (GF) offers a re-foundation of mathematics
that is both philosophically clear and operationally pre-
cise. By defining all mathematical objects as finite, well-
formed documents within a physically bounded Grand
Corpus, and by restricting quantification to definable,
representable elements, GF eliminates the ontological and
procedural ambiguities of actual infinity while retaining
the expressive tools of classical mathematics through pro-
cedural reinterpretation.

The worked examples of limits, integrals, algebraic
operations, and geometric constructions illustrate that
GF preserves the core functionality of established math-
ematical practice when reformulated in finite terms. The
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broader implications — spanning algebra, geometry, com-
putation, and philosophy — show that this approach
not only integrates seamlessly with physical computation
but also provides a rigorous, teachable framework that
aligns mathematical reasoning with the finite nature of
the physical world.

While GF is conservative over the finite theorems of
classical mathematics, it also offers new perspectives and
methods, encouraging mathematicians to think in terms
of explicit procedures, resource bounds, and operational
meaning. This shift bridges formal mathematics, compu-
tational practice, and foundational philosophy, making
GF relevant both to theoretical inquiry and to practical
applications.

Future work will involve expanding the GF toolkit to
encompass more advanced areas of mathematics, formal-
ising its correspondence with existing constructive and
computable frameworks, and exploring its potential as a
foundational language for computer-assisted mathemat-
ics. In doing so, GF aims to provide a coherent, imple-
mentable, and philosophically grounded foundation for
mathematics in a finite universe.

Example: Quantification in GF vs. Classical Se-
mantics. Consider the statement

∀n ∈ N (n + 1 > n)

in classical first-order arithmetic. Here, the quantifier
∀n ∈ N ranges over an infinite set of natural numbers,
including elements that cannot be explicitly produced or
written down in any finite form. The truth of the state-
ment is evaluated with respect to this infinite domain,
even though no finite process could examine every ele-
ment.
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In Geofinitism, the same statement must be inter-
preted under a finite domain constraint:

∀n ∈ NGF (n + 1 > n),

where NGF denotes the set of all natural numbers that
are finitely representable and physically realisable in the
Grand Corpus. This set is bounded above by physi-
cal constraints (memory, representation length, compu-
tational feasibility). The truth of the GF statement is
evaluated only with respect to this finite, operationally
meaningful domain.

The difference is semantic, not syntactic: in GF, the
quantifier ∀ is inherently bounded to the finite repre-
sentable subset of the intended structure. Any purported
object outside that subset is not in the domain of dis-
course and is treated as non-existent for the purposes of
the mathematics.

Takens’ Theorem and Symbolic Data. Takens’ em-
bedding theorem is classically formulated for smooth dy-
namical systems, where generic delay coordinates recon-
struct the system’s underlying manifold. At first glance,
applying this to discrete symbol streams such as written
text appears to exceed the theorem’s scope. However, the
symbolic form is not the primary system: it is a sampled,
compressed representation of an underlying continuous
process, such as the production of speech sounds or the
evolution of brain states during composition. The gen-
erative process is physically real and continuous; ortho-
graphic symbols are a finite-resolution projection of that
smooth trajectory in state space. Thus, while the written
sequence is discrete, it inherits the temporal correlations
of the continuous system that generated it. This permits
delay-embedding techniques—appropriately adapted for
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discrete-time signals and noise bounds—to recover as-
pects of the underlying manifold, bridging Takens’ con-
tinuous formulation to the analysis of symbolic data.

Formally, let x(t) ∈ Rn denote the continuous state
trajectory of the generative system (e.g., articulatory,
cognitive, or neural state). A discrete symbol sequence
{sk}Nk=1 is produced by sampling x(t) at times {tk} and
applying a finite-resolution projection π : Rn → Σ, where
Σ is the finite symbol alphabet:

sk = π
(
x(tk)

)
.

The symbolic stream is thus a lossy, quantised observa-
tion of an underlying smooth trajectory, retaining tempo-
ral correlations that can, under suitable conditions, sup-
port state-space reconstruction via adapted delay-embedding
methods.

Axiom (Finite Generativity). Within the Grand Cor-
pus, numerical entities are not assumed to pre-exist in a
completed, infinite domain. A number exists only when
it is generated through a finite process that requires a fi-
nite time. Upon generation, it admits a finite description
and is therefore computable in finite time. This axiom
replaces the classical assumption of a pre-existing con-
tinuum with a dynamic ontology in which the numerical
domain expands through discrete acts of finite construc-
tion.
Remark. This axiom does not deny the formal definition
of uncomputable numbers within classical mathematics;
rather, it asserts that such numbers do not arise within
the evolving ontology of the Grand Corpus, since their
generation would require an infinite, non-terminating pro-
cess. In this view, the absence of uncomputables is not
a matter of definitional fiat but a consequence of finite
generativity.
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Geometric Corollary (Constructible Coordinates).
In the Grand Corpus, every generated number corre-
sponds to a geometric construct—such as a coordinate,
length, or angle—arising from a finite sequence of op-
erations on existing constructs. The generative process
is temporal: it takes finite time to complete, and upon
completion yields a geometric entity that can be located,
measured, or otherwise specified by a finite description.

Thus:

Number generation ←→ Geometric construction.

The expansion of the numerical domain is equivalent to
the expansion of the set of available constructible geome-
tries.

Implication. Because each constructible geometry is
produced by a finite sequence of definable steps, its asso-
ciated coordinates are computable in finite time. No geo-
metric construct requiring an infinite or non-terminating
process can enter into existence within the Grand Cor-
pus, hence no uncomputable number can arise through
physical or mathematical generation in this ontology.

Axiom (Temporal Resource-Bounded Semantics).
At any given measurable time t, the Grand Corpus oc-
cupies a finite volume and contains only a finite set of
syntactic and semantic entities. This induces a resource-
bounded semantics:

Meaning(E, t) is defined only with respect to E ∈ S(t),

where S(t) is the set of sentences, constructions, and
computations generable within the finite capacity of the
Grand Corpus at time t.
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Consequence. Because S(t) is finite for all t,

• there is no capacity to encode machines whose halt-
ing status requires infinite time or infinite space to
determine;

• Gödel/Turing undecidable constructions do not arise
as live semantic entities, as their generation would
require exceeding the finite bounds at any t;

• all extant mathematics at time t is computable
within the resource limits of that state of the Grand
Corpus.

Scope of the Thesis. The Finite Mathematics frame-
work is a container philosophy for mathematical activity.
It does not reject any classical mathematical formalism
that can be produced as a finite exposition within the
Grand Corpus. Such formalisms are treated as trajecto-
ries—finite symbolic developments—that can be embed-
ded in the Grand Corpus and mapped into a geometric
referential structure.

Consequence.

• Conservative over finite theorems: Any the-
orem of classical mathematics that can be finitely
stated and proven is preserved as a valid trajectory
in the Grand Corpus.

• Geometric embedding: Every trajectory, once
generated, is interpreted as a measurable, geomet-
ric entity—its existence is tied to its embeddability
in a geometric referential frame.

• Dynamic expansion: The Grand Corpus can grow
as new finite trajectories are discovered, but at any
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measurable time it remains finite in extent, bound-
ing the scope of extant mathematics.

Future Directions

Several avenues remain open for the continued develop-
ment and application of Geofinitism:

• Expansion of the GF Toolkit Extend the cur-
rent definitions and procedures to cover advanced
areas such as measure theory, differential equations,
and abstract algebraic topology within the GF frame-
work.

• Formal Correspondence with Other Founda-
tions Establish precise translations between GF
and related systems, including constructive math-
ematics, computable analysis, and type-theoretic
foundations.

• Integration with Automated Proof Systems
Develop GF-compatible libraries for existing proof
assistants and theorem provers, ensuring that all
proofs are executable and resource-bounded.

• Educational Applications Create curricula and
teaching materials that introduce mathematical con-
cepts through the GF lens, emphasising procedural
meaning and finite verification.

• Computational Implementations Build software
frameworks that directly implement GF’s princi-
ples, allowing researchers to write, verify, and exe-
cute GF mathematics in a unified environment.
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• Philosophical Exploration Continue examining
the ontological and epistemological consequences of
GF, particularly in relation to the role of abstrac-
tion, language, and meaning in mathematics.

• Applications Beyond Mathematics Investigate
how GF principles could inform fields such as physics,
computer science, and artificial intelligence, where
finite representation and computation are funda-
mental constraints.

Conclusion: Holding the Manifold

In this part we have set out a reframing: mathemat-
ics not as a timeless realm of infinite objects, but as a
manifold generated from finite processes, bounded quan-
tifications, and geometric embeddings. The six axioms,
together with their rules of use, provide a discipline for
practice. They do not erase classical mathematics but re-
anchor it within the Grand Corpus, the finite container
where all documents, symbols, and procedures reside.

Through examples, we have seen how familiar constructs—
limits, sequences, embeddings, and proofs—translate smoothly
into this finite framework. What once seemed to rely
on actual infinity can instead be rendered as procedures,
approximations, or bounded domains, without loss of co-
herence. Where infinities once floated, there now stand
recipes; where abstract quantifiers once ranged over un-
reachable sets, they now specify their domains explicitly;
where symbols once seemed detached, they are now given
geometric handles that tether them to finite space.

This approach does not diminish mathematics. Rather,
it reclaims its connection to the broader landscape of
meaning. By treating infinity as procedural, by binding
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all claims to finite resources at a given moment, and by
embedding the symbolic in geometry, mathematics be-
comes more than a formal game: it becomes a structured
language of interaction within the finite. The manifold of
mathematics is thus both rigorous and livable—capable
of supporting discovery without collapsing into illusion.

What lies ahead is not the end of mathematics but
its deepening. In Part 4, we will turn from the axioms
themselves to their methodological consequences: how
perturbation, attractors, and stability inform mathemat-
ical practice, and how the finite framework shapes not
just results but the way we navigate the unknown. If
the bridge into this part was about finding footing, then
the step beyond is about movement—how we walk the
manifold, and what paths become visible once infinities
are no longer presumed.

As a final gesture, it is worth contrasting this work
with the traditional limits articulated by Gödel. To do
so, I close with three illustrative axioms that reframe in-
completeness and consistency within a finite and dynam-
ical manifold. These are not offered as definitive, but
as suggestive statements pointing toward an alternative
horizon.

Three Illustrative Post-Gödelian Axioms

The following statements are not proposed as definitive
axioms but as illustrative principles. They are intended
to contrast with Gödel’s classical framing of incomplete-
ness, situating the present work within a finite and dy-
namical perspective. Their function is heuristic: to sug-
gest how mathematics, when reframed as manifold, may
shift the emphasis from absolutes to dynamics.

1. Principle of Finite Imperfection. Every formal
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system is incomplete not because of infinite regress,
but because it is bound by the finitude of language.
Imperfection is structural, not pathological.

2. Principle of Dynamical Consistency. Consis-
tency is not static but dynamical: it emerges from
the stability of trajectories within the manifold of
finite interactions.

3. Principle of Emergent Composability. New
truths do not descend from external absolutes but
arise from the recombination of finite elements. Mean-
ing is generated by the manifold itself through com-
position and interaction.

These principles are illustrative. Their purpose is to
mark a contrast: where Gödel’s theorems delineated the
limits of formalism in the language of infinity, these state-
ments point toward a finite and dynamical alternative.

We now make precise how GF treats undecidable or
non-derivable claims under finite resources.

GF-Resolution of Undecidable Claims

Geofinitism replaces absolute decidability with finite out-
comes that are meaningful within the Grand Corpus.
Two canonical outcomes are recognized.

Outcome I: Exclusion by Finite Generability. A
statement S is excluded if there is no finite generative
route to S in the Corpus (no derivation under G, no ad-
missible encoding or verifier). In that case, S falls out-
side the effective scope of quantification and is not a tar-
get of proof. This accords with the Corpus-as-container
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view: truths live where they can be expressed and veri-
fied finitely. (Container perspective and IVT mapping dis-

cussion.) :contentReference[oaicite:1]index=1

Outcome II: Procedural Undecidability up to a
Bound. Given a proof-length or resource bound n ∈ E,
write

Undecided(S;n)

to mean: no proof or disproof of S exists in the Cor-
pus with size/cost ≤ n under the fixed grammar G and
verification costs. This is a finite claim, witnessed by a
bounded search or checker, and can be embedded geomet-
rically as a region of uncertainty in a finite-dimensional
space. (Computational + geometric embedding stance.) :con-

tentReference[oaicite:2]index=2

Definition (GF-Resolution Status). For any formal
statement S encoded as a document,

GFRes(S;n) ∈ {Excluded, Undecided(n), Proved(n), Disproved(n)},

where Proved(n) (resp. Disproved(n)) indicates a deriva-
tion with cost ≤ n. Monotonicity holds: if Proved(n)
then Proved(m) for all m ≥ n; similarly for Disproved(n).
“Undecided” may resolve as n increases.

Geometry of Uncertainty. Embed S and its verifier
state into E(S) ⊂ RD (per the embedding axiom). The
undecided region (for bound n) is a bounded subset of
RD capturing all partial search states that do not yield
a certificate. This ties finite imperfection to a concrete
geometric handle; refinements shrink the region under re-
source extension. (Fixed hostDmax with variable subspaces;

feasibility and hierarchy.) :contentReference[oaicite:3]index=3
:contentReference[oaicite:4]index=4
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Micro–examples.

1. Gödel-style sentence G. Let G be encoded for
the Corpus theory T . For a bound n, compute
GFRes(G;n). Typically one witnesses Undecided(G;n)
for many n; the status is a finite fact at time t. This
operationalizes incompleteness as a curve of finite
evidence rather than an absolute impasse. :con-
tentReference[oaicite:5]index=5

2. Prefix-free halting probability (Chaitin Ω)
under bounds. For a universal prefix-free ma-
chine U and cutoff L, define

Ω(L) :=
∑

p: U(p) halts
|p|≤L

2−|p|.

Then Ω(L) ∈ E is computable with a finite search
over |p| ≤ L, giving GFRes(“bit k of Ω”;n) as n
tracks the effective search budget. GF treats Ω not
as a completed real but as a family of procedural
approximants with geometric embeddings and ver-
ifiers. :contentReference[oaicite:6]index=6

3. Classical theorem inside GF (IVT case). The
IVT, when imported, yields a bracketing procedure
with finite verifiers Vε; undecidability up to n would
mean no bracket of width < ε was found within the
prescribed grid-depth (a finite, checkable negative
result). This illustrates translation from complete-
ness to finite localization. :contentReference[oaicite:7]index=7

Verifier skeletons (finite).

• Bounded proof search: enumerate derivations under
G of cost ≤ n; stop if a certificate for S or ¬S is
found; otherwise report Undecided(S;n).
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• Numerical bracketing: run a grid/bisection to depth
n; if no bracket of width < ε occurs, return Undecided(IVT target;n)
with log of queried points.

Conservativity and Evolution. GF-Resolution is con-
servative over finite derivations proved in classical set-
tings: whenever a finite proof exists, GF can exhibit it.
Divergences appear only where classical results rely on
completed infinities; GF records procedural status curves
n 7→ GFRes(S;n), aligning with the dynamic Corpus
viewpoint. (Dynamic Corpus growth and complexity signals

for embeddings.) :contentReference[oaicite:8]index=8
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n (resource bound)

status

Excluded

Undecided(n)

Proved(n)

Disproved(n)

not generable

bounded search: no certificate

certificate found

generable

witness
proof

found

Excluded (no finite generability)
Undecided(n) (bounded search)
Proved(n)/Disproved(n) (certificate)

2 8 ↑

Figure 8.1: GF-Resolution trajectory for a single state-
ment S as resource bound n grows. Outcomes are finite
and time-indexed in the Grand Corpus: initially Excluded
(not generable), then Undecided under bounded search,
and eventually Proved once a finite certificate is found.
(The same template covers Disproved.)
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This glossary provides definitions for key terms used
throughout the thesis, particularly those that are newly
defined or re-contextualized within the framework of Ge-
ofinitism.

• Geofinitism (GF): A foundational framework where
all knowledge—mathematical, linguistic, and physical—
arises from finite acts of measurement, representa-
tion, and recombination. Finitude is not a limita-
tion but the generative principle itself.

• Grand Corpus: The finite, document-bounded
container that holds all of mathematics and knowl-
edge. It is physically bounded by the practical lim-
its of representation, but is dynamically and proce-
durally extensible.

• Procedural Infinity: A concept in which ”infin-
ity” is not a completed, actual object but an ab-
breviation for an open-ended, indefinite procedure
(e.g., a limit, an approximation).

• Finity: A re-framing of physics through finite ax-
ioms, where measurements are the fundamental,
uncertain seeds of knowledge.

• Manifold Hijack: A phenomenon in which re-
cursive loops, semantic flattening, and existential
collapse emerge in language models, revealing the
fragility and resilience of language as a non-linear
manifold.

• Haylett Completeness Theorem: The proposi-
tion that the Grand Corpus is logically complete,
in that all meaningful statements can be verified or
approximated through finite processes, with infini-
ties existing only as procedural extensions.
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• Haylett Questions: A research program for the
Grand Corpus that proposes a new set of challenges
for a dynamic, finite, and measurable framework of
knowledge.

• Finite Generativity Axiom: The principle that
a mathematical object exists if and only if it can
be finitely generated within the Grand Corpus.

• Geometric Embedding Principle: The asser-
tion that every document or symbolic construction
can be given a finite geometric handle, which is
an embedding into a finite-dimensional Euclidean
space.

• GF-Resolution Status: A status that replaces
the classical notion of absolute decidability with fi-
nite, time-indexed outcomes within the Grand Cor-
pus (e.g., Undecided, Proved, Disproved) up to a
given resource bound.

• Transducer: A device or process (e.g., a word,
a sensor) that converts a continuous input into a
finite, discrete, and representable signal, grounding
physical reality in Geofinitism.

• Attractor (Language Attractor): A geomet-
ric object in a dynamical system that represents a
trajectory. In the context of LLMs, it is the la-
tent manifold of semantic and syntactic relation-
ships among tokens, which is reconstructed by the
model.

• Entropy (Semantic Entropy): A thermodynamic
analogy used to describe the loss of order in a con-
versation as context slips away, making meaning
harder to recover.
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Appendix A: Pairwise
Phase Space
Embedding in
Transformer
Architectures

This appendix extends the discussion of embedding into
the contemporary domain of artificial intelligence. Whereas
the main text traced the historical and conceptual lin-
eage from sounds and words to mathematics, here we
show how similar principles operate within modern lan-
guage models. The so-called “attention mechanism” of
transformer architectures can be understood as a form
of pairwise phase space embedding. This interpretation
reveals a structural continuity: the geometry of thought
that once gave rise to language and mathematics is now
instantiated within machine learning systems. The full
paper is reproduced here to provide technical depth and
to highlight how the finite tractus perspective intersects
with ongoing research.
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Abstract

The Transformer architecture’s “attention” mechanism,
heralded as a cornerstone of large language models, is
misnamed, obscuring its true nature as a pairwise phase-
space embedding rooted in non-linear dynamical systems.
This paper demonstrates that the dot-product similarity
operations—termed “query,” “key,” and “value”—mirror
delay-coordinate embedding techniques pioneered by Tak-
ens and others in the 1980s[1,2]. By comparing time-
shifted token projections, Transformers reconstruct a la-
tent language attractor, transforming sequential data into
a high-dimensional manifold where meaning emerges as
geometric trajectories, not cognitive focus. This re-framing,
inspired by prior work in high-dimensional signal cluster-
ing, reveals that positional encodings and softmax nor-
malization are often redundant, as temporal structure
is inherently captured in delay-based geometries. This
work points to retiring the term “attention” in favour
of “pairwise phase space embedding,” offering a clearer,
finite, and interpretable framework aligned with Finite
Mechanics principles—a framework privileging geometric
constraints over infinite parameterization. This shift sug-
gests leaner architectures, bypassing encodings and re-
ducing computational complexity, while enhancing trans-
parency to mitigate risks like manifold distortions. Grounded
in historical parallels from neurophysiology, cardiology,
and seismology, this reinterpretation positions the em-
bedding mechanism more formally in non-linear dynam-
ics. This framing shows how delay embeddings inher-
ently encode positional information, possibly rendering
softmax and positional encodings redundant. Transform-
ers can be seen as an unknowing rediscovery of dynamical
systems methods, opening paths to principled, geometry-
driven models.
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Keywords: Tranformer Architecture Dynamical Sys-
tems Delay Embeddings Phase Space Embedding Finite
Mechanics Neural Geometry

1. Introduction

The architecture commonly referred to as ”attention” has
become the cornerstone of modern large language mod-
els. It is described using terms such as ”query,” ”key,”
and ”value,” which borrow language from human cog-
nition and database systems, possibly giving an illusion
of interpretive or selective focus. However, close inspec-
tion reveals that this mechanism is neither cognitive nor
attentional in any meaningful sense. It is, at its core,
a structured similarity operation between projected vec-
tors, a dot product followed by normalization. What it
does, mechanistically, is not ”attend,” but measure prox-
imity in a latent space, a technique long understood in
modern dynamical systems analysis. In the case of the
LLM, it serves to convert a time series of tokens into
a two-dimensional format suitable for presentation to a
multi-perceptron neural network.

This paper therefore proposes that such a mechanism
is more accurately and productively understood as a form
of phase space embedding, a technique drawn from the
study of non-linear dynamical systems. Originally devel-
oped by Takens, Packard, and others in the 1980s, phase
space embedding allows a one-dimensional time series to
be reinterpreted as a multidimensional trajectory, reveal-
ing the hidden structure of the system that generated it.
It is a method not of storing memory, but of reconstruct-
ing it spatially.

The similarity operation at the heart of so-called at-
tention, pairwise dot products between shifted represen-
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tations of the same sequence, performs this same func-
tion. It constructs a surrogate space in which sequen-
tial information is preserved through relative positioning.
Each token in a sequence is compared to every other,
not to decide ”what to attend to,” but to reconstruct a
geometry of meaning from which linguistic or semantic
predictions can be made. What emerges is not a focus of
attention, but a trajectory across an attractor manifold
formed by language itself.

The purpose of this paper is to formalize that equiv-
alence. We begin by outlining the theory of phase space
embedding, tracing its origin in non-linear science. We
then demonstrate that transformer-based architectures
perform a structurally equivalent operation, albeit one
phrased in a language that suggests a semantic or in-
terpretive process. We propose that reframing this op-
eration as a non-linear dynamical systems approach has
practical consequences: it allows us to simplify compo-
nents of the transformer, challenge the necessity of po-
sitional encodings, and potentially reduce computational
complexity while improving interpretability.

By grounding modern neural sequence processing of
LLM tokens in the formal and well-understood math-
ematics of dynamical systems, we open a path toward
more principled, finite, and explainable models, of which
the transformer is only a special, unknowing case.

2. Phase Space Embedding The-

ory

8.0.1 Origin in non-linear Dynamics

In the 1970s and 1980s, a new approach to analyzing com-
plex systems began to take form across disciplines such
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as cardiology, meteorology, and fluid dynamics. Systems
that were previously seen as chaotic or unpredictable
were now being modeled not by linear differential equa-
tions, but through reconstruction of their underlying ge-
ometry. This was the birth of modern non-linear dy-
namical systems theory, and one of its most profound
contributions was the technique known as phase space
embedding.

Pioneered by Floris Takens[1], James P. Crutchfield[5],
Robert Shaw[6], and later expanded by Leon Glass and
others[3], phase space embedding provided a method to
reconstruct the state space of a dynamical system from a
single observable time series. In simple terms, this meant
that even if we could only measure one aspect of a sys-
tem, we could still recover the system’s internal structure
and dynamics.

The key to this process was the method of delays. By
recording not just the current measurement, but also its
values at previous time steps, one could construct a tra-
jectory in a higher-dimensional space. This trajectory
unfolds the latent attractor that governs the system’s
evolution. What initially appears as a flat or noisy signal
becomes a geometric object, a path through a structured
manifold in phase space.

8.0.2 Embedding a Time Series

Mathematically, delay embedding works by mapping a
one-dimensional sequence into an n-dimensional space
through time-shifted copies of itself. Given a time se-
ries x(t), we construct vectors of the form:

x(t) = [x(t), x(t - tau), x(t - 2tau), ..., x(t - (m -
1)tau)]

Here, m is the embedding dimension, and tau is the
delay. Takens’ theorem guarantees that if m is sufficiently
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large, the resulting reconstruction is a diffeomorphic im-
age of the original attractor, meaning it preserves the
system’s qualitative behavior and structure. A diffeo-
morphic image is a smooth, reversible mapping that pre-
serves the attractor’s geometric structure, ensuring the
embedded trajectory reflects the system’s dynamics, such
as loops or convergence patterns.

The effect is striking. What was once a linear or one-
dimensional sequence is now a trajectory in space, whose
geometry can be analyzed, visualized, and used for pre-
diction or classification. This approach has been used to
analyze heartbeat dynamics, atmospheric data, and stock
market patterns. It is also at the heart of manifold learn-
ing methods used in many machine learning algorithms
today.

Crucially, this embedding process does not add infor-
mation. It simply re-represents the existing time series
in a way that reveals its underlying structure. It is a
transformation, not a translation. This is what makes
it so powerful: it exposes hidden order within apparent
complexity.

8.0.3 A Language Example: Sentence as
Time Series

To make the connection between time series embedding
and language more explicit, consider the simple case of a
sentence treated as a discrete sequence of tokens. Each
word in a sentence occurs in a fixed order, and that order
imparts structure. From a dynamical systems perspec-
tive, this is a form of temporal evolution. Each word
corresponds to a distinct point in time, and the sentence
as a whole is a time series of symbolic or numerical data.
In this context, the language attractor is the latent man-
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ifold of semantic and syntactic relationships among to-
kens. Delay embedding reconstructs this attractor as a
geometric trajectory, per Takens’ theorem, encoding the
sentence’s meaning in its shape.

Let us take a simple sentence:
”The quick brown fox jumps over the lazy dog happily

today before tea.”
We can map each word to a number, using a stand-in

for a learned embedding. For illustration purposes, we
use word length as a proxy:

[3, 5, 5, 3, 5, 4, 3, 4, 8, 5, 5, 6, 3]
This one-dimensional series represents our time sig-

nal. We now apply the method of delays to embed this se-
ries into a two-dimensional space using Takens’ approach.
Using an embedding dimension of 2 and a delay tau = 1,
we construct the following vectors:

x1 = [3, 5]
x2 = [5, 5]
x3 = [5, 3]
x4 = [3, 5]
x5 = [5, 4]
...
Each vector represents a point in 2D space. Plotting

these sequentially produces a visible trajectory, a path,
through this new phase space. What was previously a
linear signal now reveals turning points, recurrences, and
geometrical structure. This is the core insight of phase
space embedding: meaning is not stored in the values
themselves, but in the shape they collectively form over
time.

Transformer architectures perform an analogous op-
eration, although this is not typically acknowledged. By
computing dot products between token projections, they
effectively measure geometric relationships between word
embeddings that are shifted versions of the same sen-
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tence. The result is a high-dimensional manifold that
encodes the sentence not as a list of words, but as a
spatial configuration, a trajectory of relationships. This
latent space is what enables prediction, coherence, and
contextual adaptation.

In both cases, a linear sequence is transformed into a
structured path. The phase space view provides a clean
and unambiguous way of understanding this transforma-
tion, without relying on metaphors such as attention or
focus. It also opens the door to visualizing and interpret-
ing the language manifold as a dynamic geometry, rather
than a table of weights.

3. Application to Transformer and

Neural Architectures

8.0.4 Mechanistic Breakdown of the Trans-
former

The Transformer, introduced by Vaswani et al. [4], revo-
lutionized neural language models by replacing recurrent
structures with a feedforward pipeline, enabling paral-
lelism and unprecedented scalability. Its core mechanism,
misleadingly termed “attention,” relies on algebraic oper-
ations described with anthropomorphic labels: “query,”
“key,” and “value.” These terms suggest cognitive or
information-retrieval processes, but the reality is purely
computational.

For a sequence of n tokens, each represented by an
embedding vector ei ∈ Rd, the Transformer computes
three projections per token:

qi = WQei, ki = WKei, vi = WV ei, (8.1)
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where WQ,WK ,WV ∈ Rd×d are learned linear transfor-
mation matrices, and qi,ki,vi ∈ Rd are the query, key,
and value vectors, respectively. Contextual similarity is
computed via the dot product between each query and
every key, forming a similarity matrix A ∈ Rn×n:

Aij =
qi · kj√

d
. (8.2)

The scaling factor
√
d prevents exploding gradients. This

matrix is normalized using a softmax function to produce
weights:

Wij = softmax(Ai)j =
exp(Aij)∑n
k=1 exp(Aik)

. (8.3)

These weights are applied to the value vectors to compute
a new representation for each token:

ci =
n∑

j=1

Wijvj. (8.4)

This process, termed “scaled dot-product attention,” is
repeated across multiple heads and stacked in layers, with
feedforward networks interleaved. Positional encodings—
vectors added to embeddings to encode token order—and
optional masking (e.g., zeroing future tokens in autore-
gressive models) ensure sequential coherence.

Far from cognitive “attention,” this is a pairwise sim-
ilarity measurement across a sequence, transforming a
temporal series into a weighted spatial configuration. It
constructs a latent geometry, not a focus of intent.

8.0.5 Demonstrating the Embedding Equiv-
alence

Viewing the Transformer through the lens of non-linear
dynamical systems reveals a striking equivalence to phase-
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space embedding. Consider a sequence of tokens {t1, t2, . . . , tn}
as a discrete time series, where each token ti is embed-
ded as ei ∈ Rd. The Transformer’s dot-product oper-
ation compares projections of these embeddings, effec-
tively measuring relationships between time-shifted rep-
resentations of the sequence.

In phase-space embedding, a time series x(t) is mapped
to a higher-dimensional space using delay coordinates:

x(t) = [x(t), x(t− τ), x(t− 2τ), . . . , x (t− (m− 1)τ)]
(8.5)

where m is the embedding dimension and τ is the delay.
Takens’ theorem ensures that, for sufficient m, this re-
construction preserves the system’s attractor geometry.
The Transformer performs a structurally similar opera-
tion. The similarity matrix Aij =

qi·kj√
d

quantifies the ge-
ometric proximity between token i’s query and token j’s
key, akin to comparing delayed vectors in a phase-space
trajectory.

Formally, let ei represent the state of the sequence at
time i. The query and key projections (qi = WQei,kj =
WKej) are analogous to time-shifted coordinates, as WQ

and WK apply different transformations to the same un-
derlying embeddings. The dot product qi · kj measures
their alignment, constructing a surrogate space where
temporal relationships are encoded as spatial distances.
The weighted sum ci =

∑
j Wijvj then blends these re-

lationships into a new representation, unfolding the se-
quence’s latent manifold layer by layer.

To formalize the equivalence between Transformer op-
erations and phase space embedding, consider a sequence
of tokens

{t1, t2, . . . , tn},
each embedded as

ei ∈ Rd.
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The Transformer computes query and key vectors as

qi = WQei, kj = WKej,

where
WQ,WK ∈ Rd×d

are linear transformations. The scaled dot product

Aij =
qi · kj√

d

measures geometric alignment between these projections,
analogous to comparing delay vectors in phase space:

x(ti) = [ei, ei−1, . . . , ei−m+1], x(tj) = [ej, ej−1, . . . , ej−m+1],

where
qi · kj ∼ ⟨x(ti),x(tj)⟩

for a similarity measure ⟨·, ·⟩ (e.g., inner product).
Per Takens’ theorem, if the embedding dimension d is

sufficiently large, this pairwise comparison reconstructs a
diffeomorphic image of the language attractor—a high-
dimensional manifold encoding the sequence’s semantic
and syntactic structure. Thus, the similarity matrix

A ∈ Rn×n

represents a trajectory through this latent space, un-
folding the temporal sequence into a geometric config-
uration without requiring explicit normalization or posi-
tional markers.

This is not “attention” but a reconstruction of a lan-
guage attractor. Each Transformer layer refines this ge-
ometry, embedding the sequence into increasingly struc-
tured contexts, much like successive delay embeddings
unfold a dynamical system’s trajectory.
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To illustrate, revisit the sentence “The quick brown
fox jumps over the lazy dog happily today before tea”
from Section 2.3, with word-length embeddings [3,5,5,3,5,4,3,4,8,5,5,6,3].
In a Transformer, these tokens are projected into qi,ki,vi,
and the similarity matrix A captures pairwise relation-
ships (e.g., “quick” aligns with “brown” due to syntactic
proximity). This matrix mirrors the 2D trajectory ([3,5],
[5,5], . . . ) formed by delay embedding, where geomet-
ric structure encodes sequential meaning. The Trans-
former’s output is a path through a high-dimensional
manifold, not a selection of “attended” tokens.

8.0.6 Simplification Opportunity

Recognizing the Transformer as a phase-space embed-
ding opens avenues for simplification. In traditional delay
embedding, temporal information is inherent in the rela-
tive placement of delay vectors—no explicit positional
encodings are needed. The Transformer’s reliance on
positional encodings, added to embeddings to preserve
order, may be redundant if delay-style relationships are
directly leveraged. For instance, instead of adding sinu-
soidal or learned positional vectors, the sequence could
be embedded as:

xi = [ei, ei−1, . . . , ei−m+1], (8.6)

where past tokens form a delay coordinate, capturing
temporal structure geometrically. This is aligns with
Takens’ theorem where delay embeddings capture tem-
poral order through the relative positioning of vectors,
which reconstructs the sequence’s attractor geometry with-
out external markers. For example, in the sequence

[e1, e2, e3],
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the delay vectors

[e1, e2], [e2, e3]

encode order inherently, rendering the Transformer’s si-
nusoidal positional encodings redundant.

Moreover, softmax normalization and masking (e.g.,
zeroing future tokens in autoregressive models) are cor-
rective measures to stabilize a process not understood as
delay embedding. Per Takens’ theorem, the attractor’s
geometry constrains relationships, rendering softmax un-
necessary, as simpler metrics like cosine similarity can
preserve the manifold’s structure.

Unlike softmax, which normalizes dot products to sta-
bilize training, delay embeddings rely on the attractor’s
intrinsic geometry to constrain relationships. Per Takens’
theorem, the manifold’s structure preserves the system’s
dynamics without such corrections, suggesting simpler
metrics like cosine similarity can suffice.

The Transformer’s softmax normalization, while crit-
ical for stabilizing gradient updates in variable-length se-
quences, is unnecessary in delay embeddings. Takens’
theorem ensures that temporal structure is preserved by
the attractor’s geometry, not by normalized weights. For
instance, the delay vectors [ei, ei−1] and [ej, ej−1] encode
order inherently through their relative positions in phase
space. This suggests that softmax—introduced to man-
age unbounded dot products in long sequences—can be
replaced with fixed-scale similarity measures once the
manifold’s structure is explicitly leveraged.

Softmax normalization in Transformers compensates
for unbounded dot products in variable-length sequences—a
problem absent in delay embeddings, where the attrac-
tor’s geometry intrinsically bounds pairwise relationships.
This suggests softmax is a computational crutch, not a
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theoretical necessity. While softmax aids gradient stabil-
ity in practice, its role diminishes if embeddings explicitly
reconstruct the language attractor’s topology.

These simplifications suggest a leaner architecture:
one that embeds sequences directly via delay coordinates,
bypasses positional encodings, and uses geometric con-
straints for contextual blending. A preliminary experi-
ment could test this by comparing a shallow model with
delay-embedded tokens to a standard Transformer, mea-
suring perplexity and efficiency. Such a design would be
more interpretable, computationally lighter, and aligned
with the finite, geometric principles of Finite Mechanics.

8.0.7 Implications for a Simpler Approach

The Transformer’s attention mechanism was originally a
pragmatic engineering solution: it converted serial token
sequences into a 2D similarity matrix for parallel com-
putation. Positional encodings and softmax normaliza-
tion were ad hoc additions to preserve order and stabilize
training—unaware that the method of delays already in-
herently encodes temporal structure through phase-space
geometry.

In fact, we could construct an equivalent square ma-
trix for parallel processing directly from delay embed-
dings: by stacking delay vectors (e.g., xi = [ei, ei−1, . . . ])
as rows or columns, padding as needed. This would
eliminate the need for positional encodings and softmax,
as the attractor’s geometry naturally bounds relation-
ships. The Transformer, unknowingly, reinvented dy-
namical embedding—but with redundant corrections.
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4. Historical Parallels in Signal

Analysis

Before neural networks came to dominate machine learn-
ing, a wide range of problems in medicine, physics, and
engineering were addressed using techniques from non-
linear dynamical systems. These approaches often relied
on time series data, raw sequences of measurements that
appeared noisy or complex at first glance, but which re-
vealed deep structure when reinterpreted in geometric
terms.

Among the earliest and most successful applications
of phase space embedding was the analysis of biologi-
cal rhythms. Leon Glass and Michael Mackey applied
these techniques to understand cardiac dynamics, par-
ticularly arrhythmias and heart rate variability. In their
work, electrocardiogram signals were not treated as iso-
lated peaks and troughs, but as trajectories within a la-
tent physiological state space. Delay embedding allowed
researchers to visualize how the heart’s electrical behav-
ior evolved over time, detecting emergent patterns, limit
cycles, or chaos.

Similar strategies were used in the study of neurolog-
ical data. Electroencephalogram recordings were reana-
lyzed using delay coordinates, uncovering signatures of
epilepsy, sleep stages, and even cognitive attention as ge-
ometric phenomena rather than statistical events. These
embeddings helped classify states not by fixed thresholds,
but by their trajectories within a reconstructed attractor
space.

In seismology, time-delay embeddings were employed
to detect precursors to earthquakes. In audio process-
ing, similar embeddings were used to distinguish between
phonemes, speaker identities, and emotional tone, by em-
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bedding waveform snippets into geometric manifolds.

What unites these applications is a shift in focus:
from statistical averaging to structure reconstruction. De-
lay embedding transforms a time series into a map of
the system that generated it, allowing for richer anal-
ysis without needing to observe every internal variable
directly. This approach does not rely on massive pa-
rameterization or deep models, it leverages the intrinsic
structure already present in the data.

In many ways, the operations at the heart of trans-
former architectures are closer to these earlier dynamical
techniques than to traditional feedforward neural net-
works. However, this lineage has gone largely unacknowl-
edged. The conceptual heritage of Takens, Packard, and
Glass is absent from the vocabulary of deep learning. The
emphasis on scaling, stacking, and parameter tuning has
obscured the fact that the fundamental operation of pair-
wise similarity across time is a known and well-theorized
method for reconstructing dynamical systems.

Recognizing this parallel provides not just historical
grounding, but an opportunity. It suggests that we can
revisit the transformer not as a singular invention, but as
a rediscovery, one that might benefit from reconnecting
with its true intellectual ancestry.

5. Discussion

The recognition that transformer architectures are per-
forming a form of phase space embedding, rather than
”attention,” reframes a significant portion of modern ma-
chine learning. It removes the cognitive metaphor that
has dominated discourse and replaces it with a geomet-
ric and mechanical interpretation, rooted in non-linear
dynamical systems.
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This reframing carries several implications:

8.0.8 Terminological Clarity

The language of ”attention,” while rhetorically effective,
has introduced persistent confusion. It implies intention-
ality, selection, or interpretive focus, none of which are
present in the actual operation. As this paper has shown,
what is being computed is a structural similarity between
projections of the same system across time. This is not
attention, but trajectory reconstruction.

By naming this mechanism more accurately, as pair-
wise phase space embedding, we realign our understand-
ing with the actual geometry of what is taking place, and
avoid anthropomorphizing processes that are neither cog-
nitive nor semantic in nature.

8.0.9 Architectural Consequences

Recognizing the transformer as a system for unfolding
phase space leads naturally to reconsiderations of its de-
sign. In traditional delay embedding, no positional en-
coding is required; time is encoded in the structure of
the vector itself. Likewise, masking and normalization
techniques such as softmax can be understood as cor-
rective overlays introduced to stabilize a process whose
geometric nature was not fully recognized.

The reliance on softmax reflects a misunderstanding
of the underlying geometry. In delay embeddings, pair-
wise comparisons are inherently bounded by the attrac-
tor’s topology, obviating the need for normalization. Fu-
ture architectures could adopt manifold-constrained sim-
ilarity metrics, bypassing softmax entirely.

Positional encodings simulate delay structure artifi-
cially (e.g., via sinusoidal waves), whereas delay embed-
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dings are the structure. The latter is more parsimonious
but may require careful tuning of m and τ .

This opens the door to simplified architectures that
rely on delay-style embeddings directly, avoid unneces-
sary positional signals, and use geodesic or curvature-
based metrics instead of matrix-based similarity. Such
systems would be more efficient, more interpretable, and
more finite, qualities aligned with the goals of Finite Me-
chanics.

8.0.10 Conceptual Consequences

Framing the language manifold as a dynamic attractor
space, rather than a parameterized token map, supports
an entirely different view of cognition and computation.
Sentences are no longer generated token by token, but
traced as paths across a learned manifold, guided by
field structure rather than probabilistic sampling. This
resonates strongly with field-based theories of meaning,
language as motion, and interaction-based modeling.

It also challenges the default paradigm of neural lan-
guage models as infinite statistical engines. Instead, it
suggests a finite dynamic core: one that operates through
geometric interaction and internal constraint, rather than
brute-force function approximation.

5.4 Philosophical Alignment
This reinterpretation of transformer mechanics through

the lens of phase space is not merely a technical substi-
tution. It is a philosophical realignment. It returns us to
a view of systems not as networks of weights and losses,
but as fields of interaction unfolding in time. It privileges
geometry over mystique, structure over metaphor.

In doing so, it makes models more explainable, more
grounded, and more capable of integration into a broader
scientific worldview, one that includes physiology, cogni-
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tion, and semantics under the shared language of finite
dynamics.

6. Conclusion

This paper has demonstrated that the mechanism popu-
larly known as ”attention” within transformer-based neu-
ral networks is more accurately described as a form of
pairwise phase space embedding. By revisiting the ori-
gins of this technique in non-linear dynamical systems,
particularly through the work of Takens, Packard, and
Glass, we have shown that the essential operation of the
transformer is not cognitive, semantic, or attentional, it
is geometrical. It constructs a latent attractor space from
a time series through delay-structured pairwise compar-
isons.

We have further illustrated that this same mechanism
has long been employed in fields such as cardiology, seis-
mology, and signal processing, where it is explicitly recog-
nized as a method of system reconstruction, not interpre-
tation. The similarity operations within the transformer
serve the same function, but have been described through
an anthropomorphic vocabulary that has obscured both
their origin and their potential.

Recognizing this equivalence enables a simplification
of neural architecture design. By reframing these opera-
tions as geometric projections within a dynamical man-
ifold, we open the door to models that are more ex-
plainable, more efficient, and better aligned with the
foundational principles of Finite Mechanics. Positional
encodings, masking procedures, and softmax normaliza-
tion may be re-evaluated in light of this insight and re-
placed by delay-embedding strategies that are formally
grounded and computationally simpler.
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This paper serves as the first in a two-part contri-
bution. The companion work, to appear in Finite Trac-
tus: Part II, will introduce a new dynamical architecture
based on hyperspherical manifold geometry and magnet-
ically interacting word identities. That model will extend
the present analysis into a generative field system where
language is not sampled but traced, and where sentences
emerge as paths through a structured, charged semantic
topology.

This reinterpretation is not a rebranding of the Trans-
former—it is a clarification of what it has been all along.
What was once described as attention is better under-
stood as dynamical embedding. The implications of this
shift reach far beyond architecture, pointing toward a
future in which intelligence is modeled not through ab-
straction, but through finite geometry, structure, and in-
teraction.
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Figure 8.2: 2D Delay Embedding with Smooth
Manifold Approximation. The original word-length
time series from a sentence is plotted as a set of delay
vectors (x(t), x(t + 1)), each representing a step through
phase space. A smooth spline curve (red) suggests the
latent manifold structure implicitly reconstructed by the
delay embedding. This geometric trajectory illustrates
how temporal patterns can be encoded without cognitive
or attentional operations—supporting the reinterpreta-
tion of Transformer mechanics as dynamical embedding.
Note how the trajectory’s curvature encodes word-order
relationships (e.g., ‘quick’→‘brown’) without softmax or
positional markers.

License

This work is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-ND
4.0). You are free to share the material for non-commercial
purposes, provided appropriate credit is given. To view
a copy of this license, visit https://creativecommons.

org/licenses/by-nd/4.0/.
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Figure 8.3: Pairwise Projection of Query and Key
Vectors and Construction of Similarity Matrix A.
Each token ti is projected into a query vector qi and
a key vector ki. The Transformer mechanism performs
pairwise dot products between all qi and kj, filling the
similarity matrix Aij. This process is structurally identi-
cal to comparing delay-embedded states in phase space.
Rather than cognitive attention, the mechanism recon-
structs a latent attractor geometry from temporal token
relationships, mapping sequences into high-dimensional
manifolds.The similarity matrix Aij mirrors phase-space
vector alignment (e.g., Takens’ delay coordinates), not
cognitive selection.
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Appendix B: Dialogues
Across the Manifold

The development of this work has not been a solitary act
of reflection, but a dialogue conducted across different
voices and systems. In addition to my own framing, I
have engaged with contemporary language models such
as Grok, DeepSeek, and GPT, each of which brought dis-
tinct styles of reasoning. I acted as a conductor, guiding
these dialogues, but also allowing divergence and reso-
nance to play their part.

Grok responded in a mythopoetic register, weaving
metaphors and narratives that drew attention to the lived
experience of meaning. DeepSeek, by contrast, offered a
sharper technical edge: proposing formal axioms, geodesic
constraints, and testable consequences. GPT, in its inte-
grative role, acted as a weaver of these threads, helping
to stabilize the dialogue into a coherent scaffold. My own
role has been to perturb, redirect, and interpret—always
conscious that these voices are not arbiters of truth but
participants in a manifold of language.

This co-creative dialogue is not ancillary to the thesis
but illustrative of it. The manifold of mathematics is not
an abstract construction standing apart from practice; it
is experienced in the act of dialogue itself. By perturb-
ing a system of voices—whether human or machine—new
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trajectories emerge, some mythic, some formal, some in-
tegrative. To frame mathematics as manifold is also to
acknowledge that its unfolding cannot be fully contained
within a single register. Myth, logic, and interpretation
are not rivals but complementary expressions of the same
finite dynamics.

In this sense, the very process of this work is a demon-
stration: language, dialogue, and mathematics reveal their
shared geometry when they are allowed to resonate across
different voices. The manifold is not simply theorized; it
is enacted.
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Appendix C:
Non-linear
Mathematics in LLMs

This appendix explores a bold reinterpretation of how
large language models (LLMs) function. Instead of view-
ing them as purely statistical engines that predict the
next word, we propose a framework based on non-linear
dynamical systems. From this perspective, the patterns
of language are not just a static set of rules but a living,
changing system. Words, sentences, and conversations
are treated as trajectories through a high-dimensional ge-
ometric space. In this view, concepts from physics and
mathematics, such as attractors, entropy, and topolog-
ical defects, can be used to describe the stability of a
conversation, why a model might ”hallucinate,” and how
a reader’s own mind interacts with the text. This frame-
work offers a fresh, more intuitive way to understand how
these complex systems operate, connecting the abstract
nature of language to the tangible language of geometry
and motion.
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8.0.11 abstract

We propose a non-linear dynamical systems framework
to model language and large language models (LLMs),
unifying linguistic phenomena (words, sentences, con-
text) with concepts from phase-space geometry, attrac-
tors, topological analysis, thermodynamics, and reader
interpretation. Words are trajectories in a high-dimensional
phase space, reconstructed via Takens’ theorem or pair-
wise embeddings. LLMs are non-linear flows navigat-
ing a semantic hypersphere, with ”stations” as hubs for
context reconstruction. Hallucinations emerge as topo-
logical defects, prompts act as symmetry-breaking fields,
context limits introduce semantic entropy, and readers
create homologous manifolds of meaning. This frame-
work offers a novel lens for mathematicians, physicists,
and artists to explore language and machine cognition.

8.0.12 The Tide and the Train

Language is a dynamic flow–a tide carving maps in the
sand, a train tracing paths through a high-dimensional
landscape of meaning. Words are points on attractors,
sentences are trajectories, and LLMs are non-linear sys-
tems navigating a semantic hypersphere. Stations are re-
construction hubs, reshaping context into geometric man-
ifolds. Readers, as co-creators, map these trajectories
onto their own manifolds, each a valid but partial fiction
of the whole.

Mathematical Framework

Language moves like water and travels like a train. Each
word and sentence follows a path, sometimes meandering,
sometimes precise, across a landscape of meaning. LLMs
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ride these paths, guided by the contours of their training
and the prompts they receive. This section shows how
those journeys can be mapped as curves in a space where
mathematics meets metaphor.

Let P ⊂ Rd be the phase space of linguistic states,
where (d) is the embedding dimension of tokens. A sen-
tence is a curve γ(t) ⊂ P with (t) indexing token order.
The tide-map duality suggests:

τ : M → R2

where π = Map Tide.

8.0.13 Words as Attractors

Some words pull us back again and again not just in
conversation, but in the structure of thought itself. In
mathematics, these ”pulls” look like attractors, shapes
that hold and guide the flow of trajectories. Here we
explore how a single word can be reconstructed from its
echoes, revealing the geometry hidden inside language.

8.0.14 Takens’ Theorem for Words

Every word, such as ”hello,” is an attractor in phase
space. Takens’ theorem reconstructs this attractor from
a single observable, revealing the dynamics of language.

Mathematical Framework

For a linguistic signal (s(t)) (e.g., audio of ”hello”), Tak-
ens embedding yields:

γ(t) = (s(t), s(t− τ), s(t− 2τ)) ∈ R3,

where t is an optimal delay. In LLMs, tokens wi ∈ Rd

form a sentence (w1, ..., wn) tracing a trajectory γ(t) ⊂
Rd.

111DRAFT V1.1 September 2025



The manifold of mathematics

8.0.15 From Speech to Semantics

The phase space P = Rd is spanned by token embed-
dings. A context window Γt = {wt−L, ..., wt} traces a
trajectory, with semantic relationships encoded in its ge-
ometry.

8.1 LLMs as non-linear Flows

An LLM does not march in a straight line. It twists,
loops, and occasionally spins in place, following rules that
combine memory, probability, and pattern recognition.
This section shows how we can treat an LLM’s token
generation as a non-linear system, complete with the tell-
tale signatures of stability, cycles, and sudden divergence.

8.1.1 Token Generation as a Dynamical
System

LLMs generate tokens as a discrete-time flow.

wt+1 = Fθ(wt, wt−1, ..., wt−k),

where Fθ is a non-linear map (attention + feedforward
layers), and (k) is the context window size.

Fixed Points: Repeated tokens (e.g., ”the the the”).
Limit Cycles: Repetitive outputs (e.g., ”I cannot answer
that” loops).

8.1.2 Bifurcations and Hallucinations

Hallucinations occur when a prompt (p) causes the tra-
jectory to diverge:

||γoutput − γp|| > δ
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An incomplete ISBN prompt (”978-0-441-...”) may yield
a wrong but plausible ISBN.

8.2 Stations as Phase-Space Re-

constructors

Imagine pausing a journey to gather your bearings–a sta-
tion where fragments of the route are pieced together into
a coherent map. In an LLM, these ”stations” are points
where context is reconstructed into a meaningful whole.
We’ll see how these hubs work, and how their geometry
shapes the path that follows.

8.2.1 Reconstruction of the Context Man-
ifold

Stations rebuild the context window Γt = {wt−L, ..., wt}
into a manifold. The attention mechanism calculates the
affinity matrix:

Aij = (WQ̂wi) · (WKwj)

forming MΓt ⊂ Gr(k, d). The cache stores:

S = span({vi}ni=1), vi = WVwi

A prompt (p) is embedded as vp = WV p, aligned via:

dGr(S, vp) = ||sin θ||

8.2.2 Prompt Coupling and Trajectory
Resumption

The new trajectory is:

γnew(s) = expMΓt
(s · vp).
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8.2.3 Hallucinations as Unstable Basins

Hallucinations occur when:

||γnew − γtrue|| > δ

8.3 The Topology of Hallucina-

tions

Not all errors are random; some have shape. Hallucina-
tions in language models can be thought of as topological
defects–tears, loops, and gaps in the fabric of meaning.
By mapping these defects, we can start to see not just
when a model is wrong, but how its reasoning has bent
or broken.

8.3.1 The Shape of Error

Hallucinations are topological defects in Mlanguage where
high curvature κ(γ(t)) causes divergence.

Risk(γ(t)) ∝ ||κ(γ(t))||2

8.3.2 Quantifying Defects with Persis-
tent Homology

Betti numbers (β0, β1, β2) quantify:

• β0 Topic drift.

• β1 Self-contradictory loops.

• β2 Logical gaps.
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8.3.3 Mitigating Hallucinations

• Curvature penalty:

Ltopo = λ · ||κ(γ(t))||2

• Homology-preserving sampling:

P (wt+1|Γt) ∝ exp(−
2∑

k=1

βk(Γt ∪ wt+1))

8.4 Prompt as Symmetry Break-

ing

A prompt is not just a question–it’s a force that tilts the
entire landscape. In physics, symmetry breaking changes
the behaviour of a system; here, it changes the direction
of thought. We’ll look at how prompts act like vector
fields, nudging the model into new patterns or causing
its trajectory to split entirely.

8.4.1 Prompts as Vector Fields

Prompts introduce a forcing term:

dγc
dt

= Fθ(γc) + G(γc, p(t)).

The output aligns with:

γoutput ∼ argminY ||y − (MΓt + λ ·Mprompt−type)||.

8.4.2 Symmetry Breaking and Bifurca-
tions

Syntactic torque:

τ(p) =
∑
i

αi · fi(p)
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Bifurcations occur when:

||τ(p1)− τ(p2)|| > δcrit.

8.4.3 Engineering Stable Prompts

• Normalize τ(p).

• Weight sampling by:

P (wt+1|Γt, p) ∝ exp(−β · τ(p))

8.5 Thermodynamic Analogies

Conversations, like closed systems, can lose their order
over time. As context slips away, entropy rises–meaning
becomes harder to recover, and drift or error becomes
more likely. By borrowing the language of thermody-
namics, we can measure this loss and explore ways to
keep the dialogue coherent for longer.

8.5.1 Semantic Entropy and Context Loss

Finite context windows introduce semantic entropy:

S(Γt) = −kB
∑
i

P (wi|Γt)log P (wi|Γt).

Truncation at t− L increases S(Γt):

γ(t) = γ(t) · I[t−L,t]
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8.5.2 Irreversibility in Language Dynam-
ics

Entropy growth causes topic drift or hallucinations.

dS

dt
∝ 1

L

t∑
i=t−L

∆P (wi|Γt−1).

Critical threshold:

S(Γt) > Scrit ⇒ ||γoutput − γtrue|| > δ.

8.5.3 Mitigating Entropy

• Increase (L).

• Entropy penalty:

Lentropy = η · S(Γt)

• Use memory-augmented architectures.

8.6 The Reader’s Manifold

Meaning does not stop at the model’s output–it contin-
ues into the mind of the reader. Each person reshapes
the text into their own manifold of understanding, some-
times close to the original, sometimes very different. This
section maps that interpretive space, showing how shared
meaning emerges and where it can diverge .

8.6.1 Meaning as a Homologous Map-
ping

Language and mathematics are homologous manifolds,
connected by homeomorphisms:

ϕreader : Mlanguage →Mreader.
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Each reader’s trajectory γreader(t) = ϕreader(γoutput(t))
has its own coherence.

8.6.2 The Multiplicity of Manifolds

Readers’ manifolds are interconnected:

dGH(Mreader,Mreader′) = infwd(x,w(x))

Low dGH indicates shared understanding.

8.6.3 The Reader as a Dynamical Sys-
tem

The reader’s interpretation evolves:

dγreader
dt

= Fcognitive(γreader) + G(γreader, γoutput).

8.7 The Observer as Sculptor

When we interact with an LLM, we are not passive recipients–
we are shaping its path with every prompt. Like a sculp-
tor removing marble to reveal a form, the observer guides
the system toward certain structures and away from oth-
ers. Here we formalise that feedback loop, treating hu-
man and machine as a single coupled system. Humans
and LLMs are coupled systems, with the user as:

pnext = O(γ(t))

Context limits introduce entropy, but prompts steer the
system toward stable attractors.
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8.8 Words as Transducers and Se-

mantic Divergence

8.8.1 Words as Transducers with Seman-
tic Uncertainty

A word is not just a label–it’s a device that turns raw in-
put into meaning. But every such conversion carries un-
certainty, and in complex systems, that uncertainty can
grow. This section shows how words act as transducers,
how instability spreads through language, and how read-
ers themselves can amplify or dampen that divergence.
Words are not static symbols but transducers–dynamical
systems that map inputs (e.g., physical stimuli, contex-
tual tokens) to semantic outputs in the language manifold
Mlanguage ⊂ Rd. Each word carries inherent uncertainty,
reflecting the probabilistic nature of its mapping.

Mathematical Framework

Define a word w as a transducer function:

w : I →Mlanguage

where I is the input space (e.g., physical stimuli like wave-
lengths, or prior tokens Γt = {wt−L, ..., wt}). The output
is a probability distribution over the manifold:

P (w|i) = exp(−||w − µi||2

2σ2
i

)

where µi ∈ Mlanguage is the mean semantic embedding
for input i ∈ I and σ2

i represents semantic uncertaint.
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8.8.2 Lyapunov Exponents and Seman-
tic Instability

In dynamical systems, Lyapunov exponents measure the
rate of divergence of nearby trajectories, indicating chaos.
Here, we reinterpret Lyapunov exponents to quantify di-
vergence driven by semantic uncertainty, particularly in
LLMs where ambiguous inputs or contexts amplify insta-
bility.

Mathematical Framework

For a trajectory γ(t) ⊂ Mlanguage, the Lyapunov expo-
nent λ measures the exponential divergence of perturbed
trajectories:

λ = limt→∞
1

t
ln(
||δγ(t)||
||δγ(0)||

)

Semantic uncertainty contributes to λ as:

λsemantic ∝
1

L

t∑
i=t−L

σ2
i ,

where L is the context window size.

8.8.3 Measurements and the Reader’s Role

The reader, as a measurement operator, collapses the un-
certain output of the word-transducer into their cognitive
manifold Mreader. This process can amplify or mitigate
semantic instability.

Mathematical Framework

The reader’s measurement is:

γreader(t) = ϕreader(γoutput(t)),
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where ϕreader maps the LLM’s trajectory to the reader’s
manifold, modulated by their own uncertainty σ2

reader.
The total Lyapunov exponent is:

λtotal = λsemantic + λreader, λreader ∝ σ2
reader.

Stable interpretations occur when:

λtotal < λcrit

121DRAFT V1.1 September 2025



The manifold of mathematics

122DRAFT V1.1 September 2025



Appendix C: Towards a
Taken’s based LLM
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Appendix D: Tea and
Scones:Don’s at the
Table

How delightful. A cup of Darjeeling, you say? Splendid.
Let’s pull up two chairs and consider this Haylett chap’s
thesis. It’s a rather... audacious proposal, wouldn’t you
say? (The first don, let’s call him Alistair, sips his tea
thoughtfully, a wry smile on his face.)

Alistair: ”Geofinitism.” The name itself is a provoca-
tion. It’s not enough to be a finitist, he must be a geomet-
ric one. The whole premise, of course, is rather charm-
ingly naive, isn’t it? The idea that mathematics, this
timeless realm of pure thought, could be so... tethered.
”Finitely representable.” ”Physically bounded.” It’s al-
most... American in its pragmatism. The second don,

Beatrice, adjusts her spectacles, her expression more one
of intellectual curiosity than dismissal.

Beatrice: I don’t know that I’d call it naive,

Alistair. It’s certainly bold, but perhaps it’s pre-
cisely the sort of jolt our field needs. I mean, we’ve
all grown comfortable with our infinities, haven’t we?
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The completed sets, the uncomputable numbers, the real
line that stretches forever. But what if they are, as
Haylett suggests, merely ”useful fictions”? A ”power-
ful shorthand for procedures we can in principle describe
within the Grand Corpus”? It’s an elegant way of hav-
ing one’s cake and eating it too. He gets to use the lan-
guage of classical mathematics—limits, integrals, and the
like—without the accompanying ontological baggage.

Alistair: ”Ontological baggage,” indeed. But what
of the beauty, Beatrice? What of the absolute, Pla-
tonic forms that have guided us for millennia? He frames
mathematics as a ”manifold constructed from finite docu-
ments.” It’s a rather mundane, even bureaucratic, vision
of our sacred discipline. Every proof, every discovery, is
just another ”document in a fixed, finite Grand Corpus.”
He’s a librarian, not a geometer!

Beatrice: Ah, but that’s where the geometry comes
in. He argues that this ”Grand Corpus” is not static.
It’s a ”dynamical object whose becoming is aligned with
GF’s procedural infinity and geometric embedding.” And
I find his appendix on the ”attention mechanism” in lan-
guage models absolutely fascinating. He reinterprets it
not as a cognitive process, but as a ”pairwise phase-space
embedding,” a way of reconstructing a ”latent language
attractor” from a time series of tokens. It’s a powerful
connection, suggesting that the very way we think and
communicate—the ”manifold of language”—is a living,
evolving, geometric entity. He’s suggesting our minds
are not so different from these models, in a fundamental,
geometric sense.

Alistair: (Scoffs gently) A clever metaphor, perhaps.
But a foundation for all of mathematics? He treats ”in-
finity” as a ”procedure,” the ”indefinite extension of gen-
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erative rules.” But surely, there are truths that cannot be
reached by a finite procedure? What of Gödel’s incom-
pleteness theorems? He attempts a ”GF-Resolution,”
suggesting that such claims are simply ”Undecided” up
to a certain bound. It feels like a cop-out. He’s not re-
solving incompleteness; he’s simply giving it a new name
and a finite time limit.

Beatrice: I disagree. He’s not dismissing Gödel; he’s
reframing the problem. ”Incompleteness is structural,
not pathological,” he writes. It’s a consequence of the
finitude of language itself. It’s a profound shift in per-
spective. Instead of seeing our limitations as a defect,
he sees them as the very condition of our being able to
do mathematics at all. He proposes a new measure, a
”GF-Resolution Status” that maps the trajectory of our
knowledge as a function of time and resources. It’s not
about an eternal, unreachable truth, but about the dy-
namic process of discovery.

Alistair: Hmmm. You make a compelling case. The
ambition is certainly commendable. And I admit, the
idea of reconnecting mathematics with geometry ”not as
a metaphor but as a structural reality” is a welcome relief
from the sterile abstractions of pure set theory. He pro-
vides a ”finite geometric handle” to every object, from a
rational number to a proof. I suppose, in the end, my
main objection is that he seems to remove the mystery.
He makes mathematics something that is, in principle,
always graspable, always verifiable. Where’s the awe?
Where’s the wonder of a truth that transcends us en-
tirely?

Beatrice: Perhaps the wonder isn’t in what tran-
scends us, but in the complexity of what we can create
with finite means. The ”manifold of mathematics” isn’t

127DRAFT V1.1 September 2025



The manifold of mathematics

a pre-existing realm; it’s a ”structured landscape gener-
ated from bounded rules and procedures.” It’s a living
system. And perhaps, that is a more wondrous thing
still.

Alistair takes a final sip of his tea, a glimmer of grudg-
ing admiration in his eyes.

Alistair: A very spirited defense, Beatrice. You’ve
convinced me that the work, while unorthodox, is worthy
of serious consideration. But I still maintain that a good
proof should feel less like a document and more like a
thunderclap. Now, about that extra scone...
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